Solution-Processed Perovskite/Graphene Nanocomposites for Self-Powered Gas Sensors (PeroGas)

(JTC-2019-016, FLAG-ERA Joint Transnational Call (JTC) 2019)

Main area: Sensors from Graphene related materials (GRMs) and their heterostructures Duration: 36 months Total project funding: € 657.725

Main Objectives:

Consortium: Istituto Italiano di Tecnologia –Italy –(coordinating)

Foundation for Research and Technology - Hellas – Greece – Funded by: GSRI

Bar-Ilan University – Israel – Funded by: InnovationAuth

- Development of sensors based on <u>GRMs</u> and <u>halide perovskites</u>, targeting mainly gaseous air pollutants (CO₂, CO, O₃, NO_x and SO_x), adaptable to smart/portable devices, which can be used to monitor the quality of breathing air in homes and cities (with fast response, high selectivity & high sensitivity).
- PeroGaS will generate know-how and technological solutions that will be useful also for other applications (solar cells, light emitting devices, and flexible electronics).

Main points of strengths of the PeroGaS project:

Development of a sensing composite material consisting of metal halide perovskite crystals conjugated to reduced graphene oxide (rGO)

This sensing material will be deposited directly onto rGO laser-fabricated interdigitated electrodes

We will develop lead-free perovskites to mitigate toxicity issues

The electrodes will be environmentally sustainable, as they will be based on rGO rather than indium tin oxide (ITO) or noble metals. rGO will provide both thermal stability and enhanced conductivity

The sensing elements are solution processable, compatible with printed electronics concepts, and printable onto flexible substrates

We address gas selectivity by using Continuous Wave Stimulated Raman Scattering. This technique can quantify and differentiate the contributions of the various adsorbed gases to the generated electrical signal.

Workpackages

Coordinating • Synthesis of perovskite nanocrystals . **ITALIANO DI**

ISTITUTO

FOUNDATION FOR RESEARCH AND TECHNOLOGY-HELLAS

TECNOLOGIA

- **Development of surface treatments** ٠
- **Development of deposition treatments** ٠
- Synthesis of perovskite microcrystals ٠
- Fabrication of perovskite@rGO conjugates ٠
- Testing of gas sensing capability ٠
- Preparation of rGO electrodes and solar cell power supply
- Testing of gas sensing selectivity ٠
- Stimulated Raman Spectroscopy

Why using halide perovskite-based materials?

High charge mobility, therefore, an electrical readout can easily be obtained as a result of variations in the environmental gas concentration. Also, these materials can be easily produced by solution-based processes.

Preliminary data on ozone sensing (beginning of the project) – FORTH: detection limit of 187 ppb

FORTH: Research highlights during the 2nd year of PeroGaS

Pb Halide Perovskite µCs

Depositing rGO flakes during the fabrication of CsPbBr₃ microcrystals: <u>the current response in one order of magnitude higher</u> than with the "bare" microcrystals (but no influence on sensitivity)

(Unpublished results)

FORTH: Research highlights during the 2nd year of PeroGaS

Mn doped CsPbBr_{1-x}Cl_x microcrystals

Ligand-free Mn doped CsPbBr_{3-x}Cl_x microcrystals capable to detect O₃

Sensing capability lower than CsPbBr₃ microcrystals

(Unpublished results)

IIT and FORTH: Research highlights during the 2nd year of PeroGaS

Sensors based on CsPbBr₃ Halide Perovskite NCs

Commercial Pt

Interdigitated

Electrodes

SEI

15.0kV

X500

ORTH-IESL

CsPbBr₃ nanocrystals in Octadecene

M. Imran et al., Nano Lett. 2018, 18, 12, 7822

WD 9.9mm

FORTH-IESL

X1,500

WD 9.9mm

IIT and FORTH: Research highlights during the 2nd year of PeroGaS

The NC films interact with O₃ but not with the desired sensing behavior

Too low conductivity (10 V resulted only few nA) Not fully recovery after O_3 exposure

Too noisy exponential curves Not capable to distinguish different O₃ concentrations IIT: Research highlights during the 2nd year of PeroGaS

Pb Halide Perovskite NCs

Removal of up to 40% of DDA(Br)

Unfortunately, the ligand stripping was not sufficient to prepare NC films of sufficient conductivity for sensing applications

IIT and FORTH: Research highlights during the 2nd year of PeroGaS **Pb Halide Perovskite NCs**

Partial ligand stripping did not favor O₃ sensing capability

FORTH and IIT: Research highlights during the 2nd year of PeroGaS

Laser-induced changes of $Cs_4PbBr_6/CsPbBr_3$ nanohexagons dispersed in dichlorobenzene, under different irradiation times.

A room temperature rapid method to modify and tune nanocrystals features

<u>Perspective:</u> A room temperature rapid method to modify and tune nanocrystals features, suitable for gas sensing applications

A. Kostopoulou et al., Nanomaterials 2022, 12, 4, 700

IIT: Research highlights during the 1st – 2nd year of PeroGaS

IIT and FORTH: Research highlights during the 2nd year of PeroGaS **Pb-free Halide Perovskite NCs**

(preliminary results)

FORTH: Research highlights during the 2nd year of PeroGaS

PeroGaS project envisages to replace noble metal electrodes with graphene-based ones.

BIU and FORTH: Research highlights during the 2nd year of PeroGaS

Incorporating Lock-in amplifier on O₃ gas sensing (preliminary results)

CsPbBr₃ microcrystals before ozone exposure

V Zurich uments AG III abOne® Version: 19.05.65305 Date: 2021-12-20 e: MFLI DEV4753 Settings: current_volt_mf_20de Instruments Time: 17:31:00 Y1: 1.1438492 mA X2: 1.498 MHz 007 17:30:07.4794 ∆ = 1.461 MHz Demod 2 Sample - Demod 2 Sample X X1: 36 kHz Demod 2 Sample Frequency (MHz)

- Large increase in capacitive current detected at high modulation frequency (i.e. driving the IDE with AC voltage at high frequency)
- Faster Detection Response
- Smaller Applied Voltage (~10 uV)

CsPbBr₃ microcrystals during ozone exposure

BIU and FORTH: Research highlights during the 2nd year of PeroGaS

In-situ O₃ Exposure and Spectroscopic Gas Detection (preliminary results)

Chemical Hood containing Setup

- Current setup involves Fluorescence and in-situ
 Ozone Source
- Next Setup will contain in-situ absorption
- Then Raman, and Quantum Yield

BIU and FORTH: Research highlights during the 2nd year of PeroGaS

In-situ O₃ Exposure and Spectroscopic Gas Detection (preliminary results)

Optical Excitation of CsPbBr₃ with 405 nm laser

PL after "X" minutes of continuous O_3 exposure

PL intensity increases upon O3 exposure!

- From 10000 counts to 22,0000 counts after 5 minutes!
- See similar behavior with 405 nm and 532 nm excitations

Will repeat with different filtering...

PeroGaS research activities that expected to follow

WP1: Development of Sensing Elements

- Establishment of a methodology to treat ligand capped nanocrystals
 - Nanocrystals need to be become capable of detecting air pollutant gases
- Pb-free perovskite-based sensing element
 - Quickly identify the best candidates
- Conjugate Pb-free perovskite micro/nanocrystals with rGO
 - These should be capable to detect air pollutant gases similarly to the Pb-based materials

WP2: Design and Development of the Sensor Device

- Fabrication of rGO interdigitated electrodes
 - Optimize laser-based fabrication procedures
- Power supply with a solar cell
 - Design, fabricate and test a suitable all-inorganic or organic solar cell

WP3: Evaluation of Sensing Abilities

- Incorporating Stimulating Raman Scattering technique to detect air pollutant gases
 - Identifying gases on a mixture of air pollutants
- Theoretical modeling
 - Study the impact of rGO component on the gas sensing mechanism

Publications during the 2nd year of PeroGaS

Dissemination and communication actions during the 2nd year of PeroGaS

(IIT)

- 1. L. Manna, "Halide Perovskite Nanocrystals: Synthesis, the Role of the Surface, Heterostructures", COPAC symposium on Parallel Computing Quantum Devices, March 23 2021
- 2. L. Manna, "Metal Chalcohalide Nanocrystals and Their Heterostructures with Halide Perovskite Nanocrystals", MRS Virtual Spring Meeting, April 22 2021
- 3. L. Manna, "Metamorphoses in Cesium Lead Halide Nanocrystals", ACS Journal Club symposium on "Transformative Inorganic Nanocrystals", July 27th 2021
- 4. L. Manna, "Halide Perovskite Nanocrystals: Synthesis and Optical Properties", 107° Congresso Nazionale della Società Italiana di Fisica, September 13th 2021
- 5. L. Manna, "Nanocrystal Heterostructures Involving Halide Perovskites and other Materials", MRS Virtual Fall Meeting 2021, December 7th 2021
- 6. L. Manna, "Accelerated discovery of nanocrystal materials", AL4QD workshop "Designing Nanomaterials of the Future", December 14th 2021

(FORTH)

- 1. A. Kostopoulou, K. Brintakis, K. Savva, N. Livakas, E. Stratakis, "Laser-assisted processes on metal halide nanocrystals: Shape/dimensionality transformations and conjugation with 2D materials", Internet NanoGe Conference on Nanocrystals 28/6 2/7 2021
- 2. K. Brintakis, A. Argyrou, A. Kostopoulou, E. Stratakis, "CsPbBr₃ perovskite microcrystals and their capability to detect ultra-low ozone and hydrogen concentrations", AIP Horizons Energy Storage and Conversion 4-6 August 2021
- 3. A. Kostopoulou, K. Brintakis, K. Savva, E. Stratakis, "Laser-assisted processes on metal halide nanocrystals: Shape/dimensionality transformations and conjugation with 2D materials", E-MRS 2021 Fall Meeting 20-23 September
- 4. A. Argyrou, K. Brintakis, A. Kostopoulou, E. Gagaoudakis, E. Stratakis, "Highly sensitive ozone and hydrogen sensors based on perovskite microcrystals directly grown on electrodes", Panhellenic Solid State Physics Conference 26-29 September 2021
- 5. K. Brintakis, A. Argyrou, A. Kostopoulou, E. Stratakis, "CsPbBr₃ perovskite microcrystals and their capability to detect ultra-low ozone and hydrogen concentrations", NanoGe Fall Online Meeting 18-22 October 2021

Responsible research and innovation (RRI) actions

Open Science: our articles are open access, also datasets are uploaded on public repositories

Interactions with the Graphene Flagship:

We have been having discussions and a meeting with Dr. Camilla Coletti, Deputy di WP10 (Wafer Scale Integration) on collaborations:

- rGO deposition
- Interfacing of perovskites with rGO

Further discussions and start of a collaboration are foreseen in the 3rd year

PeroGaS website and twitter account

https://perogas.eu/

The PeroGaS project (JTC-2019-016, FLAG-ERA Joint Transnational Call (JTC) 2019) is active from March 2020 to March 2023 and unites the Italian Institute of Technology (IIT, Italy, coordinator), the Foundation for Research and Technology Hellas (FORTH, Greece, partner) and the Bar Ilan University (BIU, Israel, partner) with the aim to design and develop novel sensors for gaseous air pollutants which can be integrated into the Internet of Things.

https://twitter.com/PEROGAS_FLAGERA

💿 ΙΙΤ, FORTH, BIU 🔗 perogas.eu 🏢 Έγινε μέλος: Μάρτιος 2021

