

MINERVA

MakIng New ElectRonic deVices from Amorphous materials

FLAG-ERA JTC 2021 - Graphene - Basic Research

Growth and device integration of two-dimensional amorphous materials

2D materials => promising properties for "high-tech" applications

Mechanically flexible batteries, flexible & transparent optical sensors High frequency optoelectronic devices, compact modulators and photodetectors

BUT some limitations =>

- Synthesis
- Properties / structure / defects

BUT some limitations =>

• Synthesis : high temperature growth, high cost methods

Alternative => structurally disordered 2D materials

- Produced at much lower temperatures
- Have been shown to manifest a large degree of uniformity over large areas
- Performant properties for device applications
 - ✓ Functionalisation
 - Sheet resistance
 - ✓ Electrons scattering
 - ✓ Ultrathin seed for ALD
 -

Amorphous BN presents overall superior performances compared to all benchmarked materials !

ŚAMSUNG \Rightarrow Ultra-low dielectric-constant UNIVERSITY OF UNIST CAMBRIDGE \Rightarrow Excellent field emission performance International journal of science Article Ultralow-dielectric-constant amorphous \Rightarrow Mechanical stability at high T boronnitride \Rightarrow Strong adhesion feature https://doi.org/10.1038/s41586-020-2375-9 Seekmo Hong¹, Chang-Seek Lee², Min-Hyun Lee², Yeongdong Lee²⁴, Kyung Yeol Ma^{4,3}, Gwangwoo Kim¹, Seong in Yoon^{4,8}, Kyuwook Ihm⁶, Ki-Jeong Kim⁶, Tae Joo Shin¹², Received: 16 November 2019 Sang Won Kim², Eun-chae Jeon^a, Hansol Jeon^a, Ju-Young Kim², Hyung-Ik Lee^a, \Rightarrow Large thermal conductance (?) Zonghoon Lee¹⁴, Aleandro Antidormi¹⁰, Stephan Roche¹¹⁸, Manish Chhowalla¹¹⁸⁸ Accepted: 25 March 2020 Hypon-Jin Shin²⁵⁸ & Hypon Suk Shin^{1,4,1,258} Published online: 24 June 2020

S. Hong et al. Nature 582, 511-514 (2020)

Suitable for interconnects technologies and high performance electronics (flexible dielectric devices or conductive bridging RAM)

How will the degree of amorphicity impact the properties?

MINERVA Objectives

- **1.** Synthesize amorphous Boron Nitride (aBN) on various substrates with controlled degree of amorphicity, dimensionality, sp₂/sp₃ ratio.
- 2. Study its mechanical and thermal properties as a function of its amorphicity.
- **3. Study its electronic properties** to establish its potential as integrable component in electronic devices.
- 4. Standardize aBN as reference material for the Graphene Flagship Samples and Materials Database: providing specification of produced aBN following the characterization protocols.

5. Study and realize its integration and scalability into target devices: resistive switching devices, magnetic tunnel junction, spin-injection tunnel barriers.

MINERVA Consortium

Country	Institution/ Department	Name of the Principal Investigator (PI)
FRANCE (UCBL)	LMI / Université Claude Bernard Lyon 1 (UCBL)	Catherine Journet Coordinator
SPAIN (ICN2)	Catalan Institute of Nanoscience and Nanotechnology (ICN2)	Marianna Sledzinska
SWEDEN (UU)	Department of Physics and Astronomy / Uppsala University (UU)	Venkata Kamalakar Mutta
BELGIUM (UCLouvain)	IMCN / Université catholique de Louvain (UCLouvain)	Jean-Christophe Charlier

Duration: 36 months (2021/12/31 – 2024/12/30) Total cost: 847 900 €

MINERVA Organization

MINERVA Scientific skills

LMI / Université Claude Bernard

Lyon 1 (UCBL) UCBL UCBL

Expert in boron nitride synthesis with different structures by:

• CVD

ALD and LOCALD

• PDCs

Catalan Institute of Nanoscience and Nanotechnology (ICN2) ICN2

MINERVA Scientific skills

Expert in mechanical and thermal characterization as well as modelling via classical molecular dynamics

MINERVA Scientific skills

Department of Physics and Astronomy / Uppsala University (UU)

UU

UPPSALA UNIVERSITET

Expert in electrical and spin transport characterization, realization of novel 2D amorphous memristors, magnetic tunnel junctions and spin valves

MINERVA Scientific skills

Expert in first-principles techniques and DFT-enriched TB methods

Thank you for your attention !