

Dr. César Moreno (PI-Coord.)

Universidad de Cantabria, Santander | Spain Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona | Spain

FLAG-ERA 2022 Project Workshop

LEGOCHIP:

Multifunctional Nanoporous Graphene Integration in Operational Nanophotonic Biosensor Devices

The aim

Surface Biofunctionalization

Fransducer

Key factors

- Stable attachment
- Density control
- Orientation control
- Reproducibility
- Anti-fouling

Optimum accessibility

Non-specific adsorption

Strategy

- Intrinsic functionalization
- Strategies to improve order

2. Integration of graphene nanoarchitectures into biosensors

> NPG/GNR transfer to BiMW sensors

- Effect on light transmission
- Effect on sensing performance
- Graphene biofunctionalization
 - Selection of crosslinkers
 - DNA immobilization optimization
- microRNA detection

In-solution synthesis

Diego Peña (USC-CiQUS)

in-solution synthesis

On-surface synthesis

C. Moreno et al. Science, 360-6385 (2018)

On-surface synthesis

Density of 0.5 10⁶ pore/ μ m²

C. Moreno et al. Science, 360-6385 (2018)

Chemical functionalization for DNA anchoring

3

1

GNR-2

HO₂C Br 3

Br

GNR-4

Increasing order

Increasing order

Template assisted NPG

Synthesis of NPG

Ex-situ functionalization

Risk description	Likelihood	Impact	Mitigation plan			
Difficulties to synthetize functionalized NPG	Low	Low	Oxidation of NPG by using a UHV oxygen craker as a source of atomic oxygen. Ongoing DFT calculation demonstrate highly selective oxidation of the pores in the NPG structure. Other extrinsic methods, such as dosing triasine or borazine to chemically functionalize the nanopores.			

Epoxidation of the C-C double bonds is very selective at the pore edges.

Template assisted NPG

Synthesis of NPG

Integration into **BiMW**

Integration of graphene nanoarchitectures: transfer

Wet and polymer-free transfer route of samples until 1x1 cm² size by gold etching

Transferring onto desired substrates

Structural integrity

1.- Integrity check by optical microscopy

2.- Integrity check by Raman

3.- Functional groups by XPS

Selection of crosslinkers

Graphene Biofunctionalization

Protocol of immobilization

• Timings (in flow, ex-situ incubation)

Biosensors

BiMW interferometer

Working principle

- Single channel waveguide interferometer
- Operated on interference of two light modes (fundamental and first order) of the same polarization
- No need anymore of Y-shape splitters (as in MZI or Young Interferometer)
- The modes propagate with different velocities and create an interference pattern at the exit, which intensity distribution depends on the refractive index of the cladding layer through the interaction with the evanescent field.

Biosensors

Label-Free Biosensors Based on Bimodal Waveguide (BiMW) Interferometers

Sonia Herranz*, Adrián Fernández Gavela*, and Laura M. Lechuga

Integrated planar optical waveguide interferometer biosensors: A comparative review

Peter Kozma ^{a,*,1}, Florian Kehl ^b, Eva Ehrentreich-Förster ^a, Christoph Stamm ^c, Frank F. Bier ^a

Biosensors and Bioelectronics 58 (2014) 287-307

DNA immobilization

- Graphene: NH₂-7AGNR
- Crosslinker: NHS-PEG-MAL
- Probe: SH-DNA

$$\Delta n_{\min} = \frac{\Delta \varphi_{\min}}{S_{\text{bulk}}} = \frac{\Delta S_{\text{R,min}}}{S_{\text{bulk}}} \frac{\pi}{V} = \frac{3 \cdot \sigma_{S_{\text{R}}}}{S_{\text{bulk}}} \frac{\pi}{V}$$
$$10^{-7} - 10^{-8} \text{ RIU}$$

LOD at low ng-pg/L level

DNA immobilization

- Graphene: NH₂-7AGNR
- Crosslinker: NHS-PEG-MAL
- Probe: SH-DNA

Problems:

• Reproducibility with target

• Unspecific bindings

- Study different crosslinkers for amine-amine coupling
- Minimize non-specific adsorption issues

To test directly with DNA probes and target microRNA detection

To probe other microRNA biomarkers in gold to advance tests related to the assay conditions

microRNA biomarkers

Manuela Ferracin

- ✓ Selection of novel target microRNA biomarkers for melanoma diagnostics
- (U. Bologna, IP)

✓ Collection of clinical sample in oncological patients.

microRNA biomarkers

To date we have enrolled 57 melanoma patients and collected 172 blood samples.

- 28 Stage III patients
- 24 Stage IV patients
- 12 Stage IV patients treated with immunotherapy

microRNAs	DNA probes
miR-21 -5p	probe-21
UAG CUU AUC AGA CUG AUG UUG A	SH-(polyT) ₁₅ - ATC GAA TAG TCT GAC TAC AAC T
miR-150 -5p	probe-150
UCU CCC AAC CCU UGU ACC AGU G	$SH-(polyT)_{15}$ - AGA GGG TTG GGA ACA TGG TCA C
miR-155 -5p	probe-155
UUAAUGCUAAUCGUGAUAGGGGUU	$SH-(polyT)_{15}$ - AAT TAC GAT TAG CAC TAT CCC CAA
miR-221 -3p	probe-221
AGC UAC AUU GUC UGC UGG GUU UC	$SH-(polyT)_{15}$ - TCG ATG TAA CAG ACG ACC CAA AG
miR-320a -3p	probe-320a
AAA AGC UGG GUU GAG AGG GCG A	$SH-(polyT)_{15}$ - TTT TCG ACC CAA CTC TCC CGC T
miR-424 -5p	probe-424
CAG CAG CAA UUC AUG UUU UGA A	SH-(polyT) ₁₅ - GTC GTC GTT AAG TAC AAA ACT T

Based on previous and current clinical studies for early melanoma diagnostics and patients monitoring, we have selected an initial panel of circulating microRNA biomarkers

From these microRNA, we have designed the oligonucleotide sequences corresponding to complementary DNA probes

NanoB2A

Preliminary optimization & evaluation of microRNA analysis with SPR biosensor

- > Analytical parameters for microRNA detection
- Anti-fouling tests
 - 1. Probe density
 - 2. DNA vs RNA analysis
 - 3. Plasma fouling
 - 4. Towards real samples

Probe Density

Non-specific adsorption

It is important to optimize the density probe to ensure maximum detection efficiency

miR detection in buffer

1.0

target	LOD (nM)	LOQ (nM)
miR-21	1.89	23.0
miR-155	5.11	22.5
miR-320a	1.03	12.7
miR-424	2.92	10.2
miR-221	-	-
miR-150	-	-

- DNA and RNA behave similar
- LOD in the nM range

1.0₁

miR detection in plasma

Surface bloking: BSA 30 mg/mL Antifouling buffer: SSC 2.5x + CHAPS 10 mM and Tween 20 0.05%

target	LOD (nM)	LOQ (nM)
tDNA-21	17.4	34.7
tDNA-155	6.05	23.2
tDNA-320a	4.88	12.9
tDNA-150	7.01	17.2
tDNA-221	3.29	10.9
tDNA-424	11.1	25.2

1.0

1.0

0.8

0.6 VY (um)

0.4

0.2

0.0

1.0

0.8

(mu). 0.4

0.2

0.0

miR-320a

20

miR-221

20

40

40

60

[tDNA-221] (nm)

80

100

tDNA in 10% plasma

20

40

60

[tDNA-424] (nm)

80

100

- Reduce but not eliminate fouling
- Plasma matrix slightly affects hybridization

Towards real samples...

PCR results:

microRNA	Average (ct)	Minimum (ct)	Maximum (ct)
miR-155-5p	98546,9	9 13781,3	3 393750
miR-320a	3168327,7	7 14437	5 10828125
miR-424-5p	903260,1	1 56875	5 5228125
	to molarity		
microRNA	Average (aM)	Minimum (aM)	Maximum (aM)
miR-155-5p	818,22	2 114,42	2 3269,26
miR-320a	26306,27	7 1198,73	3 89904,72
miR-424-5p	7499,67	7 472,23	3 43408,54

Signal Amplification: second step with anti-DNA/RNA Hybrid antibody

Towards real samples...

PCR results:

microRNA	Average (ct)	Minimum (ct)	Maximum (ct)
miR-155-5p	98546,9	9 13781,	3 <u>393750</u>
miR-320a	3168327,7	7 14437.	5 10828125
miR-424-5p	903260,1	1 5687	5 5228125
	to molarity		
microRNA	Average (aM)	Minimum (aM)	Maximum (aM)
miR-155-5p	818,22	2 114,4	2 3269,26
miR-320a	26306,27	7 1198,7	3 89904,72
	7400 67	472.2	2 42400 54

Signal Amplification: second step with anti-DNA/RNA Hybrid antibody

LOD in the pM-nM range!

other amplification strategies
transfer to BiMW biosensor

Patricia Gorgojo

(U. Manchester, IP)

The University of Manchester

Suspended NPG characterization

STM – NPG/Au

TEM – Suspended NPG/SiN membranes

Cs-TEM

Suspended NPG:

- 1. Mechanical integrity
- 2. Clean

Sealing defects in NPG

Polyethersulfone (PES) nanofiltration membranes prepared via phase inversión onto nonwoven supports

Membrane	Code	PES	APTS-GO	PVP	DMF
A REAL PROPERTY.			g		
PES	M00	20.0	-	-	80.0
PES - PVP	M02	20.0	-	3.0	77.0
PES - APTS-GO	M20	20.0	0.1	-	79.9
PES - APTS-GO - PVP	M22	20.0	0.1	3.0	76.9

PES - APTSGO -PVP

Surface :

SUDADA

Model biological sample

Proteins:

Represented as Bovine Serum Albumin (BSA, MW ~66 kDa) Lyophilized powder BSA protein (Sigma-Aldrich)

MicroRNA:

- Represented as synthetic oligos DNA of Target 21: TAG CTT ATC AGA CTG ATG TTG A
- 1 µmole DNA Oligo (Integrated DNA Technologies)
- \blacktriangleright The sample was resuspended and diluted at 100 μ M
- Aliquots of 500 µL were separately frozen for further use

Solute	Concentration range	Unit	
BSA	60 - 80	mg/ml	
Oligo DNA	1 - 100	nM	

Implementation of developed membranes into commercial cartridge

Implementation of developed cartridge into biosensing setup

Publications

