

DIMAG - Electrically controlled ferromagnetism in 2-dimensional semiconductors call: FLAG-ERA JTC2019 topic: 1. Synthesis and characterization of layered materials beyond graphene

start: 31 March 2020

Lino M.C. Pereira *Quantum Solid State Physics,* KU Leuven, Belgium on behalf of Michel Houssa (coordinator, KU Leuven) and the DIMAG consortium

the DIMAG consortium

	Country	Institution/ Department	Principal Investigators (PIs)
1 Coord.	Belgium	KU Leuven, Laboratory for Semiconductor Physics (KUL1)	Michel Houssa, Jean-Pierre Locquet
2	Belgium	KU Leuven, Institute for Nuclear and Radiation Physics (KUL2)	Lino M.C. Pereira
3	Germany	Hamburg University, Physics Department (UHH)	Michael Martins, Ivan Baev
4	France	Laboratoire de Physique des Solides, CNRS (LPS)	Antonio Tejeda, Vincent Jacques
5	Slovenia	University of Nova Gorica, Laboratory of Quantum Optics (UNG)	Giovanni De Ninno, Primož Rebernik, Barbara Ressel

the DIMAG project

Goal: new types of 2-dimensional ferromagnetic materials for spintronics electrically controlled ferromagnetism, high spin polarization fundamental research in nature, but aiming at device-compatible functionality

Model systems:

- 1) flat-band 2D semiconductors (InSe, ...)
- 2) magnetically doped 2D semiconductors (Mn-doped MoS₂, ...)
- 3) flat-bands in single-layer graphene (strain-induced pseudomagnetic field lattices)

the DIMAG approach

- theory (guide experimental work and to support data interpretation): density functional theory (DFT), molecular dynamics and Monte Carlo (KUL 1)
- growth/doping/modification of 2D materials by molecular beam epitaxy (MBE) and ultralow energy ion implantation (KUL 1,2)
- advanced studies of the electronic and magnetic properties using state-of-the-art techniques:
 - scanning tunneling microscopy (STM) and spectroscopy (STS): probe structural, electronic and magnetic properties at the atomic scale (KUL 2)
 - angle resolved photoemission spectroscopy (ARPES), and inverse photoemission spectroscopy (IPES) (standard as well as spin-resolved and time-resolved): electronic structure (LPS, UNG)
 - **x-ray magnetic circular dichroism (XMCD):** spin and orbital magnetic momenta with element-specific capabilities (UHH, UNG)

system 1: flat-band 2D semiconductors

- 2D semiconductors (InSe [1], SnO [2],...) with flat bands
 - in the single-layer regime
- flat band \rightarrow Van Hove singularity (VHS)
- VHS \rightarrow Stoner-like ferromagnetism
 - in highly p-doped state
 - robust magnetization
 - high Curie temperature

half-metallic behaviour, with fully spin-polarized charge carriers electrical control (acceptor doping and/or electrical gating)

[1] K. Iordanidou et al., ACS Applied Nano Materials. 2018; 1:6656[2] [Houssa2018] M. Houssa et al., AIP Advances. 2018; 8:055010.

KU LEUVEI

theory: hole-doping induced ferromagnetism in 2D materials

- DFT+MD+MC for screening compounds and crystal structures
 - evaluate structural/thermal stability
 - evaluate spin polarization, magnetic anisotropy and Curie temperature

[1] Meng *et al.*, "Two-dimensional gallium and indium oxides from global structure searching: Ferromagnetism and half-metallicity via hole doping", *J. Appl. Phys.* 128, 034304 (2020)

[2] Meng *et al.*, "Ferromagnetism and half-metallicity in two-dimensional MO (M=Ga, In) monolayers induced by hole doping", *Phys. Rev. Mater.* 4, 074001 (2020).

[3] Meng et al., "Hole-doping induced ferromagnetism in 2D materials", in preparation.

high-throughput first-principles simulations

high-throughput first-principles simulations

high-throughput first-principles simulations

KU LEUVEN

system 1: flat-band 2D semiconductors

- metal halides take up the biggest proportion of the candidate materials, followed by the sulfides, oxides, etc.
- magnetic properties (spin polarization energy, magnetic anisotropic energy, magnetic exchange coupling parameters,...) generally improve with increasing hole doping density.
- Curie temperatures above room temperature are predicted for P3m1-PbCl₂ (394 K), Cd(OH)₂ (341 K), BaF₂ (337 K), HgF₂ (333 K), CdF₂ (320 K), PbBr₂ (301 K) and P6m2-PbCl₂ (300 K) and near room temperature for P4/mmm Pb₂Br₂F₂ (289 K) at a hole density of 6×10^{14} cm⁻².

we are currently developing the growth of single-layer InSe and GaSe (lower T_c but exists in bulk)

challenge: few/single layer 2-dimensional growth

Growing reports of high temperature ferromagnetism in transition metal dichalcogenides (MoS₂, WSe₂) doped with transition metals

[Nat. Comm. 10, 1584 (2019),

Adv. Sci. 7, 1903076 (2020),

Phys. Rev. B 103, 094432 (2021), ...]

ultra-low energy (ULE) ion implantation

~ 10-100 eV keV – MeV 3D materials / bulk

2D materials / surface

ultra-low energy (ULE) ion implantation

• any element of the periodic table

- control ion energy \rightarrow incorporation
- beyond thermodynamically-favored incorporation configurations
- control number of implanted ions
- reproducible, scalable
- area-selective

molecular dynamics + density functional theory

 $MoS_2/Au(111)$ grown by pulsed laser deposition

Pristine MoS₂ basal plane components

non-stoichiometric MoS_x ($1 \le x \le 2$) components

- Mo 3d at 229.25 eV and S 2p at 162.19 eV
- S in different environments: S top and S bottom

synchrotron x-ray photoelectron spectroscopy @SUPERESCA, ELETTRA

system 2: magnetically doped 2D semiconductors MoS₂/Au(111) grown by pulsed laser deposition

KU LEUVEN

Mn-implanted

changes in core level spectra:

- Chemical signature retained
- Minimal increase in defect components

 $MoS_2/Au(111)$ grown by pulsed laser deposition

relative concentration of Mn: 4.4% monolayer equivalent

(MLE = surface atomic density of Mo in MoS2 on Au(111) i.e. 1.15×10^{15} atoms cm⁻²)

synchrotron x-ray photoelectron spectroscopy @SUPERESCA, ELETTRA

system 2: magnetically doped 2D semiconductors MoS₂/Au(111) grown by pulsed laser deposition

- Mn L_3 (2p_{3/2}) and L_2 (2p_{1/2}) edges
- low oxidation state: Mn²⁺ (3d⁵)

R. Qiao et al., Current Applied Physics 13, 544 (2013)

system 2: magnetically doped 2D semiconductors MoS₂/Au(111) grown by pulsed laser deposition

- Mn L_3 (2p_{3/2}) and L_2 (2p_{1/2}) edges
- low oxidation state: Mn²⁺ (3d⁵)

MoS₂/sapphire(0001) grown by chemical vapor deposition

X-ray magnetic circular dichroism (XMCD) @DEIMOS, SOLEIL

MoS₂/sapphire(0001) grown by chemical vapor deposition

X-ray magnetic circular dichroism (XMCD) @DEIMOS, SOLEIL

system 2: magnetically doped 2D semiconductors MoS₂/sapphire(0001) grown by chemical vapor deposition

@ BaDEIPh, ELETTRA

ARPES

KU LEUVEN

system 2: magnetically doped 2D semiconductors MoS₂/sapphire(0001) grown by chemical vapor deposition

KU LEUVEN

system 3: flat-bands in single-layer graphene

periodic, strain-induced pseudomagnetic fields

system 3: flat-bands in single-layer graphene

periodic, strain-induced pseudomagnetic fields

KU LEUVEN