

Graphene cOmposites FOR advanced drinking WATER treatment

GO-FOR-WATER

Manuela Melucci, manuela.melucci@isof.cnr.it

WATER CHALLENGES

Emerging Contaminants (ECs)

- Pharmaceuticals and Personal Care Products (PPCP), Hormones, Stain repellants/non- stick surfaces (PFAS), Metals, Fertilizers, Pesticides, Plasticizers
- More than 30000 new products every year
- Not fully removed by conventional technologies

12/01/2021

https://eur-lex.europa.eu/eli/dir/2020/2184

GO for WATER

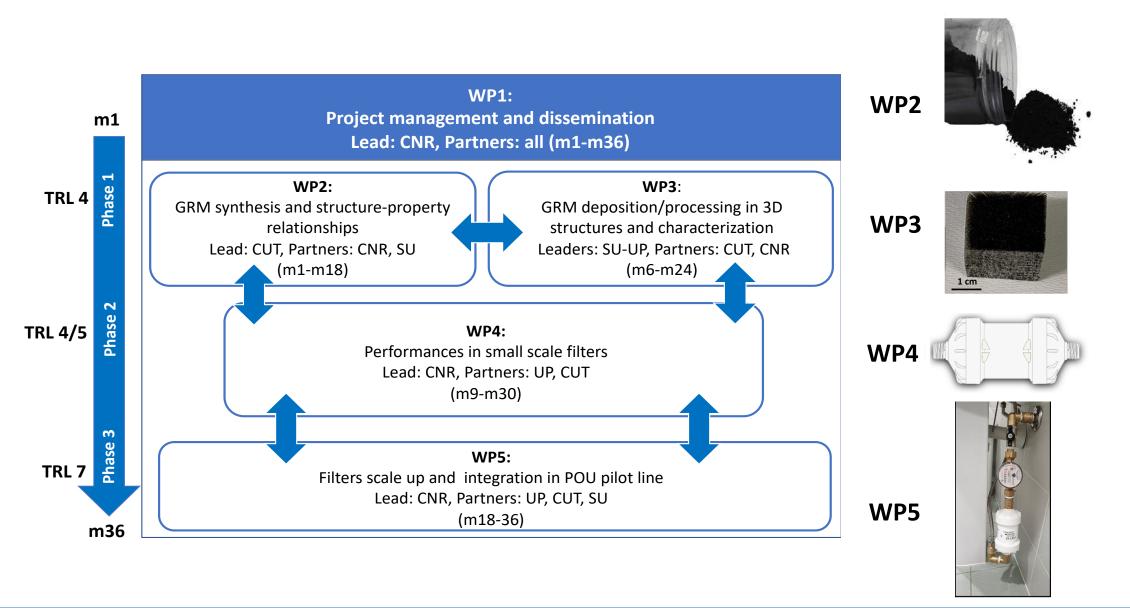
https://www.theguardian.com/environment/2022/jan/18/chemical-pollution-has-passed-safe-limit-for-humanity-say-scientists

https://sdgs.un.org/goals

SAFE AND AFFORDABLE

DRINKING WATER

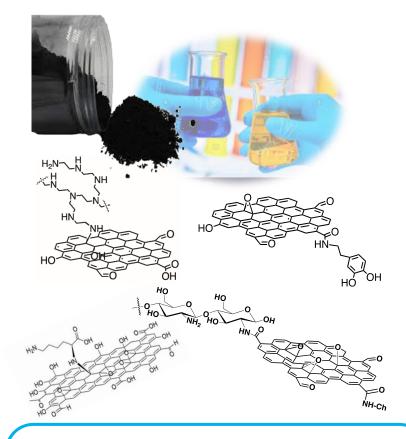
6

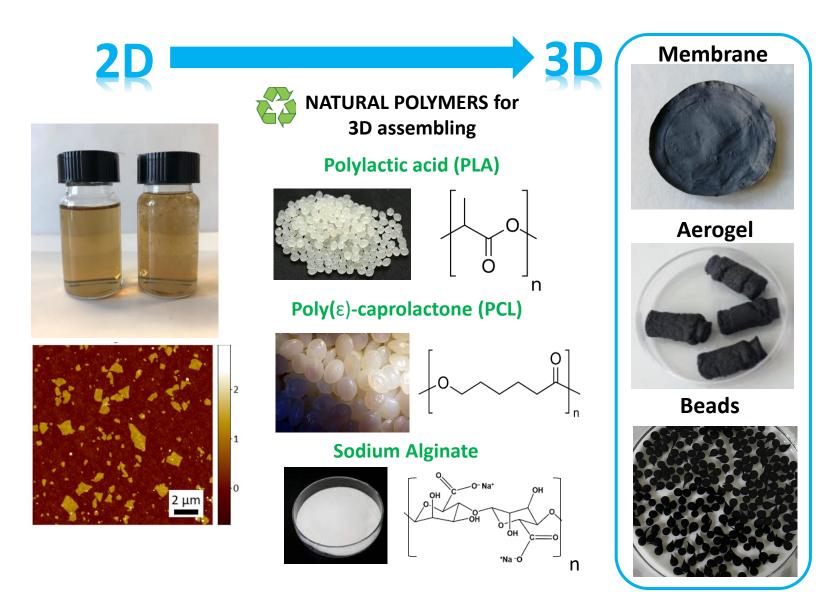

2 million tons

waste released everyday to water

CONSORTIUM

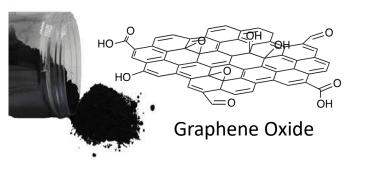
NATIONAL RESEARCH COUNCIL (CNR-ISOF, BOLOGNA CNR- IRSA, ROME, ITALY)	UNIVERSITY OF PATRAS (UP)	SABANCI UNIVERSITY (SU)	CHALMERS UNIVERSITY (CUT), GOTHEBORG, (SE)
PI: M. Melucci B. Casentini (IRSA) S. Amalfitano (IRSA) V. Palermo (ISOF) M. L. Navacchia (ISOF) A. Kovtun (ISOF), B. F. Tunioli (ISOF)	PI: C. Galiotis G. Gorgolis G. Paterakis C. Androulidakis I. Sfougaris	PI: B. Saner Okan Prof. Y. Menceloglu M. Hezarkhani M.S. Sorayani Bafqi	PI: Z. Xia
	Technical co	ntributions	
 GRAPHENE FUNCTIONALIZATION WATER TREATMENT WATER QUALITY 	 AEREOGELS GRAPHENE COMPOSITES 	 GRAPHENE FROM WASTES GRAPHENE COMPOSITE MEMBRANES 	MULTIPHASE CHARACTERIZATION
FLAG-ERA	FLAG-ERA 2022 Proje	ect Workshop 21st March	GOLIONWATER


GO-FOR-WATER Pert chart

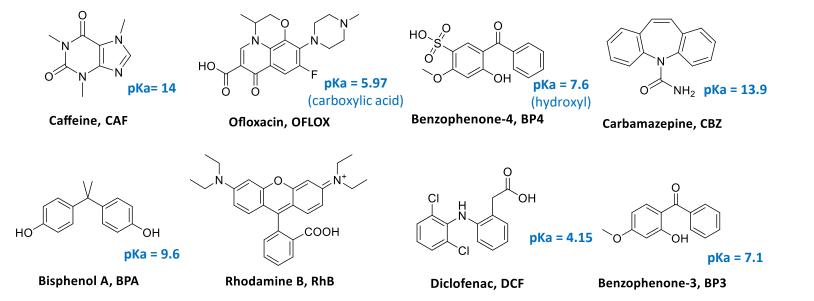


GO-for-WATER

TAILORING GRAPHENE MATERIALS AND COMPOSITES FOR WATER PURIFICATION


- Chemical tailoring for specific sorption
- Kinetic–efficiency
- Working mechanism
- Regeneration
- Safety

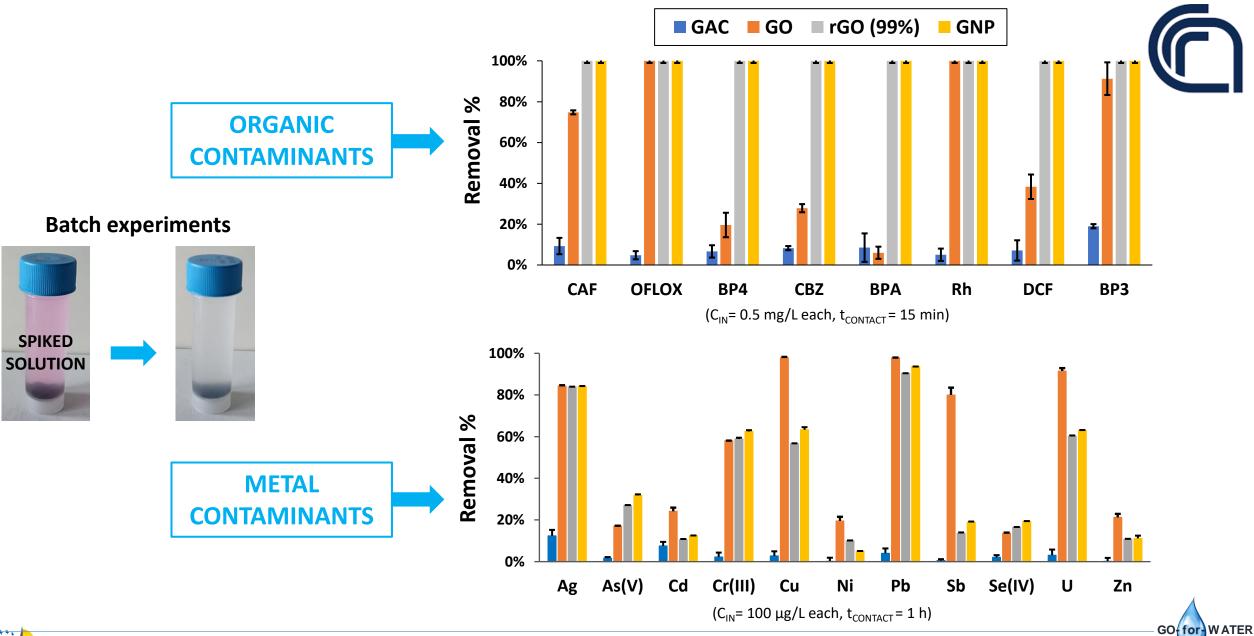
GO for WATER


CARBON NANOMATERIALS and TESTED CONTAMINANTS

	GO	rGO	GNP	GAC				
0/C	0.350 ± 0.001	0.010 ± 0.003	10 ± 0.003 0.050 ± 0.005					
Surface A (m ² /g)	1191	378	148	1000				
ζ Potential (mV)	-43.1 ± 2.4	-35.3 ± 3.1	-39.2 ± 1.1	-				
pH in H ₂ O TAP	6.60	7.29	7.19	7.21				

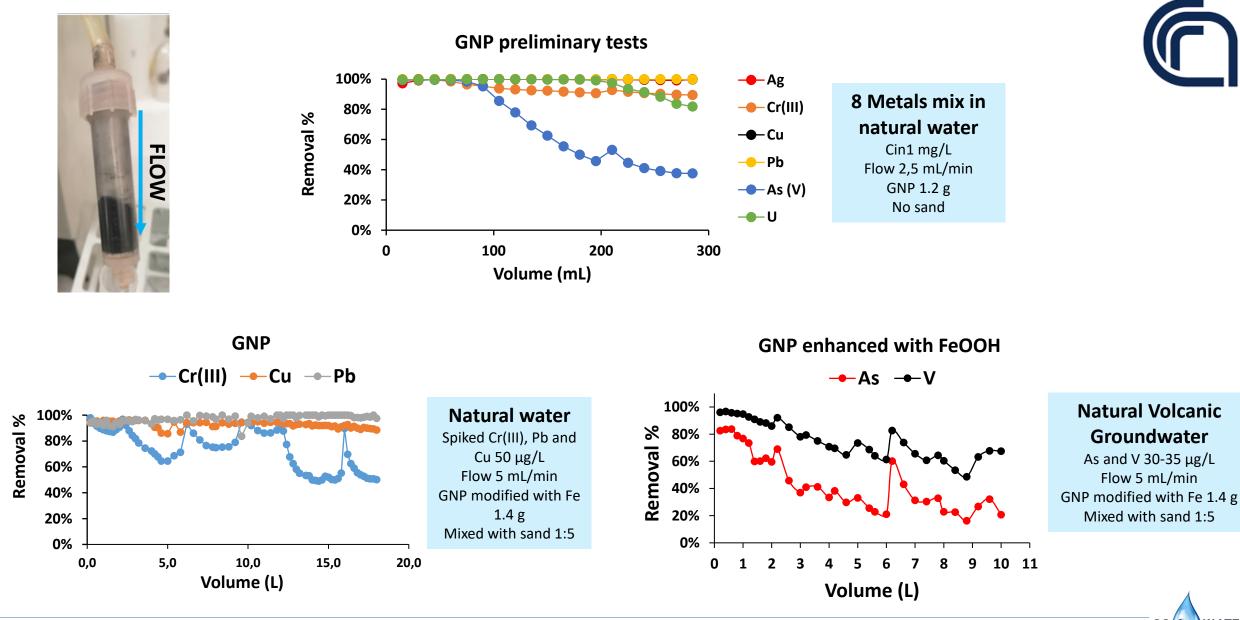
Mix of 8 Emerging Organic Contaminants (MIX8)

Mix of <u>Metals</u>

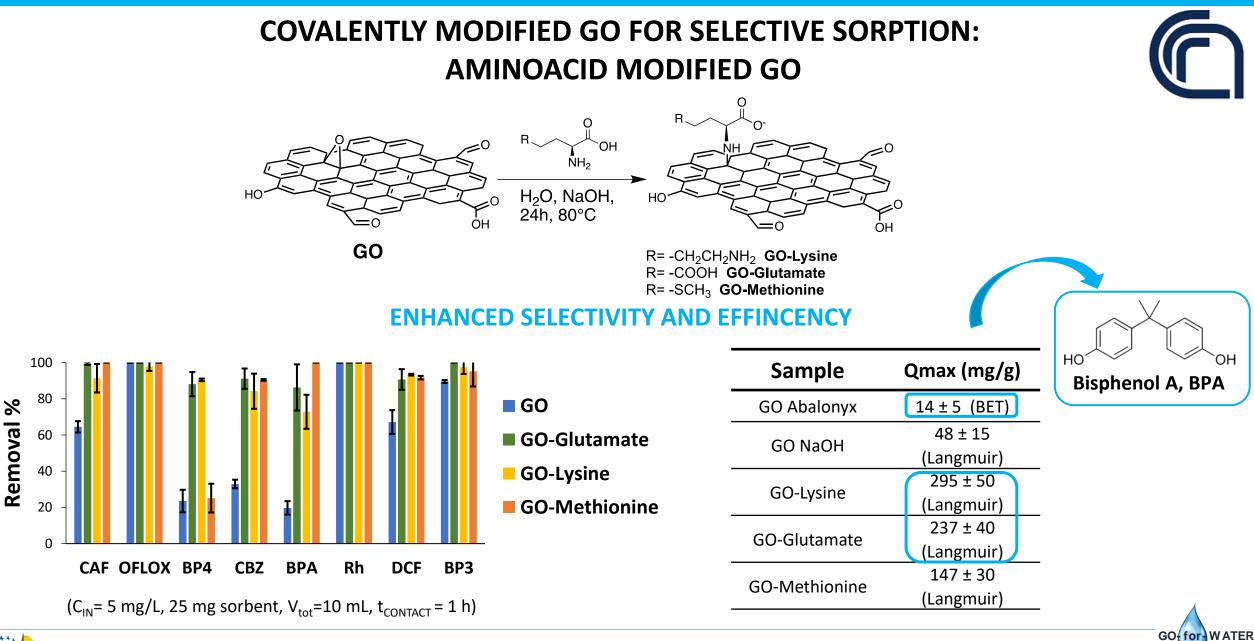


Silver (Ag)	Lead (Pb)
Arsenic (As)	Antimony (Sb)
Cadmium (Cd)	Selenium (Se)
Chromium (Cr)	Uranium (U)
Copper (Cu)	Zinc (Zn)
Nickel (Ni)	

GO- for WATER

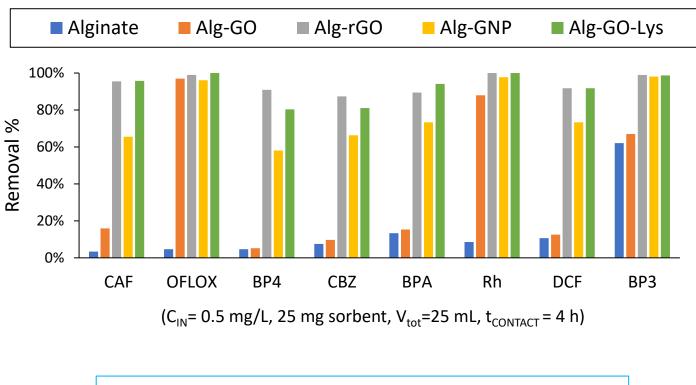


SELECTIVITY TEST IN BATCH CONDITION


SELECTIVITY TEST IN FLOW CONDITION

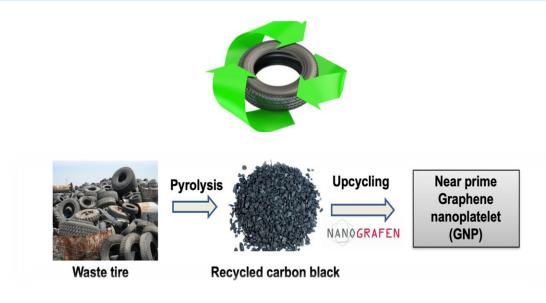
FLAG-ERA 2022 Project Workshop 21st March

GO for WATER

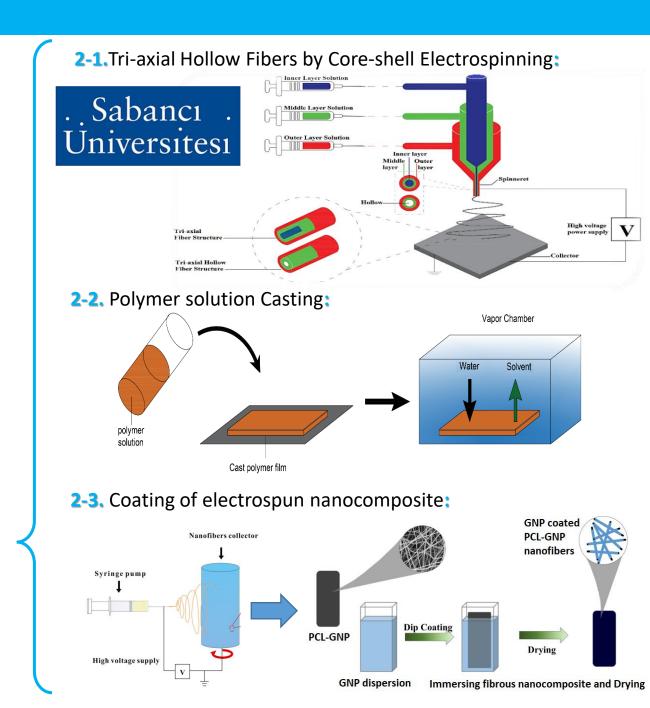

ALGINATE-GRAPHENE BEADS

Graphene 20 % (w/w)

Composites show **same selectivity** of 2D nanosheets


Next step: test in **flow condition**

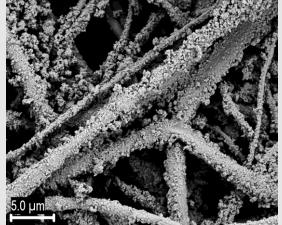
FLAG-ERA


FABRICATION OF COMPOSITE MEMBRANES

Step 1. Waste tire driven graphene nanoplatelets (GNP) production in pilot scale

Step 2. Encapsulation GNP in electrospun structures and polymeric GNP-based membranes are developed for water treatment application.

PCL and PLA polymers used as backbone structure. GNP, TEGO, GO, and rGO are used as carbon-based materials.

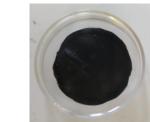


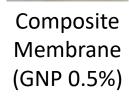
GNP synthesis pathway

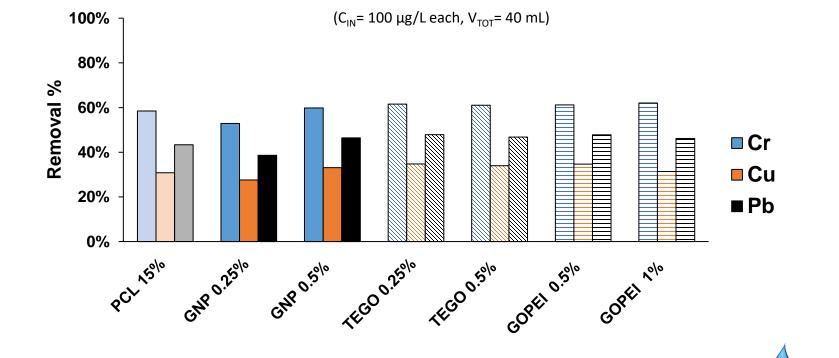
Coating of electrospun nanocomposite Tri-axial Hollow Fibers by Core-shell Electrospinning Layers Set1: Layers Set3: Layers Set2: Coating 1 - CNT 🖊 Electrospun hollow fiber Electrospun hollow fiber PCL-GOPEi Membranes PCL 15%-GNP 1% Nanofibrous web was dipped in CNT-Water 1-PCL 15 wt%-GNP 0.25 wt% 1-PCL15%-TEGO 0.25% 1-PCL15%- GOPEi 0.5% dispersion for 2h and then dried. 2-PCL 15 wt%-GNP 0.5 wt% 2-PCL15%-TEGO 0.5% 2-PCL15%- GOPEi 1% Coating 2 - rGO 🗸 3-PCL15%-TEGO 1% PCL 15%-GNP 1% Nanofibrous web was dipped in GO-Water dispersion for 2h and then reduced by using hydrazine hydrate (20%) evaporation in a desiccator for 24 h in 40° C. Coating 3 - GNP 🗸 PCL 15%-GNP 1% Nanofibrous web was dipped in GNP-Methanol dispersion for 2h and then dried. PCL 15 wt%-GOPEi 1% PCL 15 wt%-TEGO 1% PCL 15 wt%-GNP 0.5 wt% PCL 15%-GNP 1% Layers Set4: **Polymer solution Casting** PCL:PLA porous casted film Electrospun PCL 1wt%-GNP 0.25wt% (foam)

Dip Coated in GNP

ADSORPTION TEST: FIRST REMOVAL TESTS WITH METALS




GO for WATER

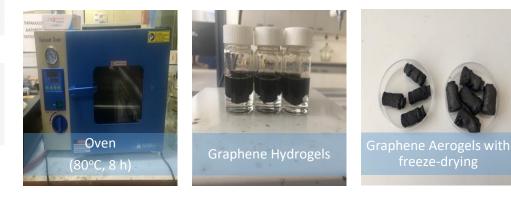

Enhanced GNP membranes did not show significantly higher removal if compared to pristine membrane (PCL15%) Next step: **enhance GNP concentration** (< 1% was too low) and **render more available graphene** by coating or fabricating membranes in a different composition.

Pristine Membrane (PCL15%)

FABRICATION OF PCL/PLA-GRAPHENE AEROGELS

Freeze Drying

Water removal from a material that entails the freezing of the material followed by pressure reduction combined with the supply of heat, in order to allow the sublimation of the frozen water.


01 Pre-freezin	g Reduces drying time by 30% Freezer, chilled bath or shelf on freeze-dryer
02 Primary Dry Phase	Ying Stage of sublimation Removal of 95% of moisture Pressure and temperature of sample higher than ice collector's

Higher temperature than in primary drying Formation of porous structure **Drying Phase** 7-8% residual moisture

Synthesis Method

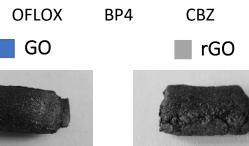
Based on: J.-Y. Hong et al. / Chemical Engineering Journal 269 (2015) 229–235

03

Secondary

ADSORPTION TEST: FIRST REMOVAL TESTS WITH ORGANICS

GO for WATER

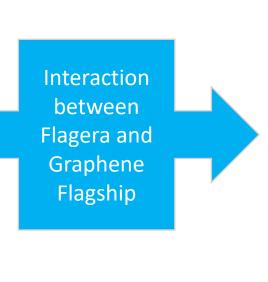


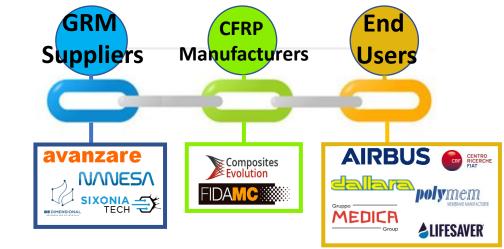
FLOW TEST

y Solid

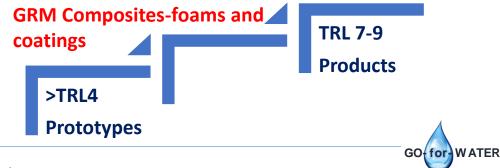
Average removal after 200 mL (C_{IN}= 0.5 mg/L, V_{TOT}= 200 mL, 0.8 mL/min) 100% 80% 60% 40% 20% 0% CAF OFLOX BP4 CBZ BPA Rh DCF BP3 GO rGO GO+GNP

Next step: test **composite aerogels** (with PCL and PLA) in flow condition


Graphene aerogels show same selectivity of 2D nanosheets in flow condition


Removal %

INTERACTION WITH THE GRAPHENE FLAGSHIP


- FORTH/ICEHT is leader of the WP14 of the Graphene Flagship. University of Patras has direct interaction with FORTH/ICEHT.
- CNR and FORTH are involved in WP13
- CNR, CUT are involved in SH1-GRAPHIL

✓ Enhance further the value chain established for automotive, aerospace, filters industries by combing excellent research facilities and industrial partners/ end users.

 Optimize promising applications developed in Core2 to produce new prototypes and products, for aerospace, automotive, buildings, power transmission industries, water filters

GO-FOR-WATER Gantt chart

Task	Description	Partner		Year 1				Year 2						Year 3												
			1	2 3	3 4	56	7	8 9	9 10	11 1	2 13	14 1	5 16	17 1	8 19	20	21 22	23 2	24 25	26	27 28	29	30 31	32	33 34	4 35 36
WP1: Project	management and dissemination																									
Task 1.1	S&T coordination	CNR																								
Task 1.2	Administrative project management	CNR																								
Task 1.3	Dissemination of results and IP issues	all																								
WP2: Synthe	sis and structure-property relationships of GRM																									_
Task 2.1	Semindustrial synthesis of graphene precursors	UP, SU																								
Task 2.2	Synthesis and chemo-physical characterization of GRM	CNR,CUT																								
Task 2.3	Selectivity-efficiency tests of GRM (batch)	CNR																								
WP 3: GRM d	leposition/processing in 3D structures and characterization]																								
Task 3.1	Fabrication of core-shell fibers, membranes	SU																								
Task 3.2	Fabrication of aerogel	UP																								
Task 3.3	Coatings	UP, CUT																								
Task 3.4	Multiscale, chemo-physical characterization	CUT, UP, SU																								
WP 4: Perfori	mances in small scale filters																									
Task 4.1	Operation conditions/Removal efficiency (continuous)	CNR, UP																								
Task 4.2	Materials stability/ integrity	UP, CUT																								
WP 5: Scale u	ıp-Pilot tests																									
Task 5.1	Scale up (materials/filters)	CNR, UP, SU																								
Task 5.2	Filters validation in pilot POU	CNR,UP																								

	D3.1	M24	3D GRM composites and coatings for water purification
	D3.2	M24	Removal efficiency of selected GRM composites in multicontaminated
· .			real matrices

GO for WATER

Thank you

GO-FOR-WATER

