

MARGO: MAxillofacial bone Regeneration by 3D-printed laser-activated Graphene Oxide scaffolds

Main area: Soft graphene-based materials for tissue engineering

Keywords: Bone regeneration, 3D printing, antibacterial, graphene oxid

Duration: 36 months

Total project funding: € 450.000

A project based on graphene and 3D printing

Maxillofacial defect modelling **GO-composites 3D printing** Patient-tailored scaffold **Laser activation** of graphene oxide surface **Antibacterial effects** and cell growth induction **Patient-driven** reconstruction

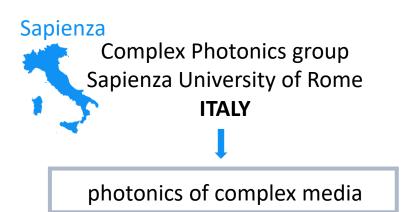
MARGO PILLARS

Scalable and patient-tailored designs by 3D printing

Exploitation of reparative capacity of mesenchymal stromal cells grown on laser reduced GO

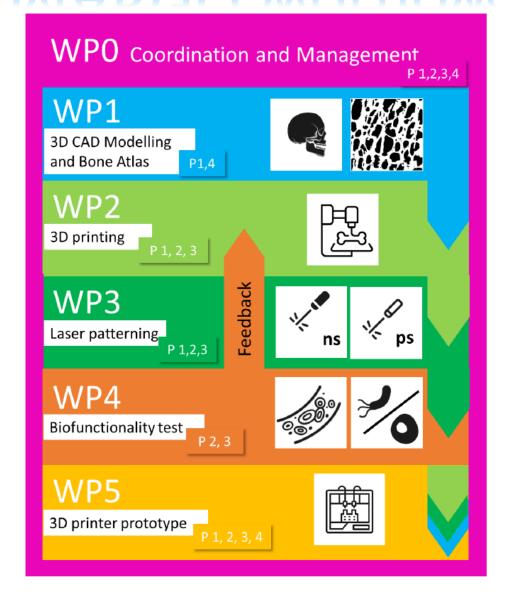
Direct control of bone formation, antibacterial action, and vascularization via laser activation.

MARGO Partners


MARGO Partners Expertise

Consejo Superior de Investigaciones Cientificas (CSIC)
SPAIN

2D and 3D morphometric analysis software


photonic materials and in biomaterials and tissue engineering

graphene-functionalized biomaterials applied to healthcare and life science

MARGQ worflow

MARGO timeline

		Tasks	Deliverables	Partner responsible	Partners involved	M1-M6	M7-M12	M13-M18	M19-M24	M25-M30	M31-M36
WP0	Manageme	T0.1	D0.1	1	2,3,4	D0.1					
		T0.2	D0.2	1	2,3,4						
		T0.3	D0.3	1	2,3,4				D0.2/D0.3		
		T0.4	D0.4	1	2,3,4						D0.4
WP1	3D CAD	T1.1	D1.1	4				D1.1			
		T1.2	D1.2	4	1					D1.2	
		T1.3	D1.3	4							D1.3
WP2	3D print	T2.1	D2.1	2	1	D2.1					
		T2.2	D2.2	1	3	D2.2					
		T2.3	D2.3	1	2,3		D2.3				
		T2.4	D2.4	2	1			D2.4			
WP3	Laser activate	T3.1	D3.1	3	1		D3.1				
		T3.2	D3.2	3	1			D3.2			
		T3.3	D3.3	3	1					D3.3	
		T3.4	D3.4	2	1,3			D3.4			
WP4	ion	T4.1	D4.1	3	2				D4.1		
	Bio-function	T4.2	D4.2	2	3				D4.2		
		T4.3	D4.3	2	3						D4.3
		T4.4	D4.3	3	2						D4.3
WP5	Proto- type	T5.1	D5.1	1	3,4					D5.1	
		T5.2	D5.2	1	2,3						D5.2
		T5.3	D5.3	1	2,3						D5.3

Starting date: 1rst May 2020 End date: 31rst January 2024

MARGO progress*

- * The progress of the project has suffered the pandemic situation and the funding delay of the Italian and Greek partners.
- **D0.1** Consortium agreement establishment and Kick-off Meeting
- **D2.1** Report on polymer/GO composites synthesis in various concentrations of GO

Tested Polymers

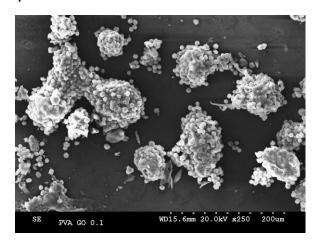
GO-polylactide-co-glycolide (PLGA)

GO-polyvinyl alcohol (PVA)

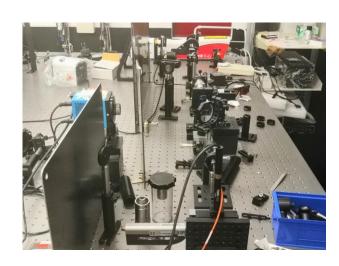
GO/alginate

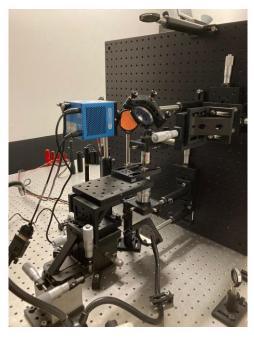
GO concentration

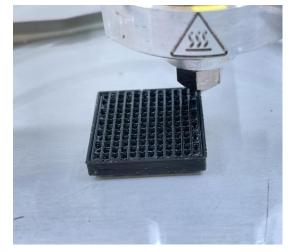
0-30% powder

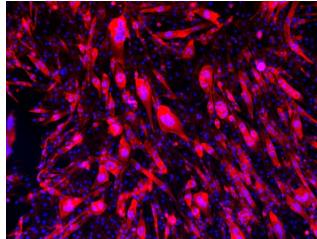


Bioprinting/Fused deposition modelling


The CSIC group selected the suitable samples to perform the first test of cellular growth and adhesion after laser activation (Libra laser at 800 nm, 1 kHz repetition rate, fs pulse duration).



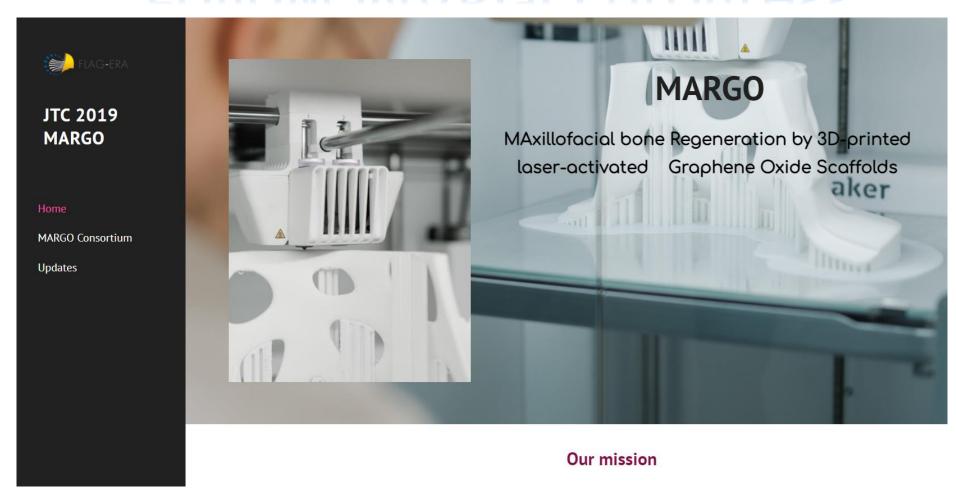

MARGO ongoing steps


WP3: the ns setup for the laser activation (Sapienza University)

WP2: 3D printing of GO mixtures and cell growth in 3D

Responsible Research Innovation

High interdisciplinarity of the team Including biologists, physics, physician, dentists


Public health oriented objectives

Sharing of the main results on the project website

https://sites.google.com/view/margoflagera/

Follow MARGO progress

https://sites.google.com/view/margoflagera/