ETMOS

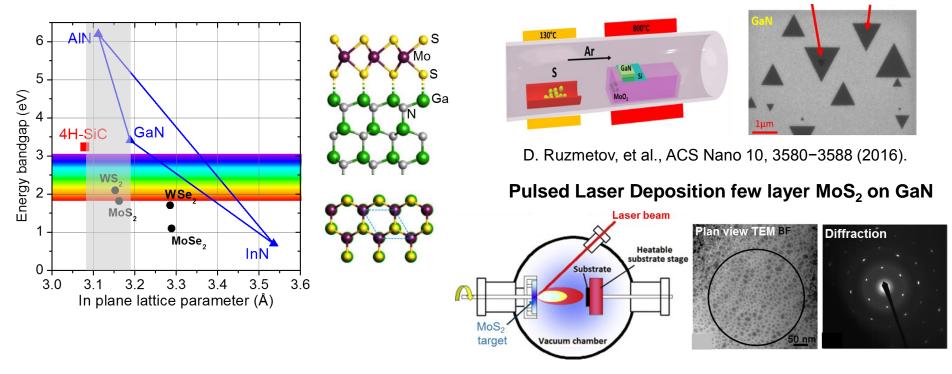
JTC-2019 1 April 2020 – 31 March 2023 Epitaxial Transition Metal dichalcogenides Onto wide bandgap hexagonal Semiconductors for advanced electronics

F. Giannazzo, F. Roccaforte, A. La Magna CNR-IMM, Catania, Italy

A. Michon, M. Al Khalfioui, Y. Cordier CNRS-CRHEA, Valbonne, France

S. Chromik, M. Španková SAS-IEE, Bratislava, Slovakia

B. Pécz, A. Koos MFA-EK, Budapest, Hungary

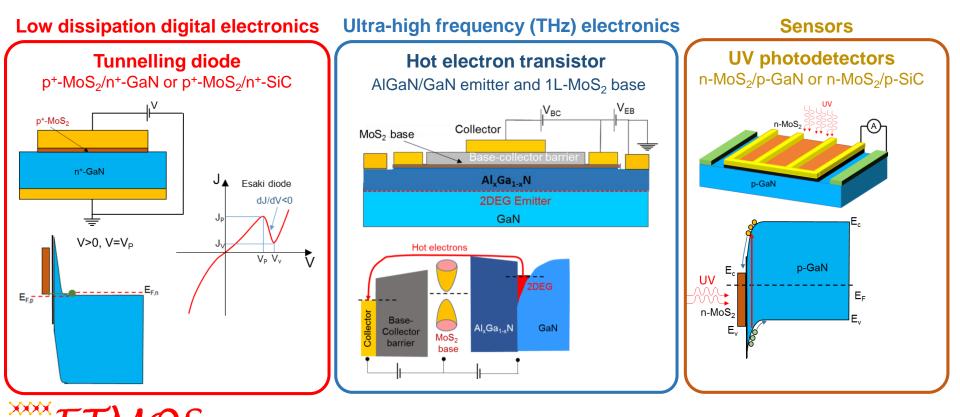

S. Agnello, M. Cannas University of Palermo, Italy

filippo.giannazzo@imm.cnr.it

Motivations

Hexagonal wide band-gap (WBG) semiconductors (4H-SiC,GaN, AIN, Al_xGa_{1-x}N) are nearly ideal substrates for highly oriented epitaxial growth of TMDs

CVD of MoS₂ on GaN


S. Chromik, et al., Appl. Surf. Sci. 395, 232–236 (2017).

Development of advanced electronic/optoelectronic devices based on the 2D/3D semiconductor heterojunctions between TMDs and WBG.

Objectives:

- (i) **Epitaxial growth of TMDs** (MoS₂, WSe₂) on WBG hexagonal semiconductors (SiC, GaN, AIN and AlGaN) by physical deposition techniques: **molecular beam epitaxy (MBE) and pulsed laser deposition (PLD).**
- (ii) Multi-scale characterization (structural, chemical, optical and electrical) of the grown TMDs;
 benchmarking against materials grown with the same or complementary depositions methods (CVD);
 simulations of the growth process and electronic properties.
- (iii) **Processing** and **device prototypes** based on TMDs/WBG heterojunctions.

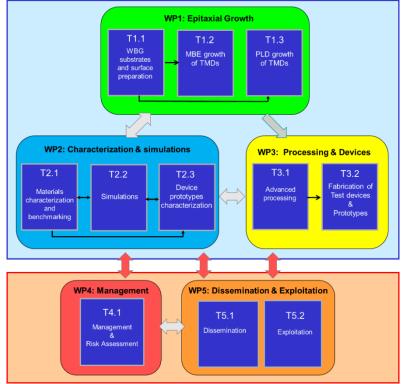
- Nanoscale and device level electrical characterizations.
- Simulations of deposition processes and of electronic transport.
- TMDs/WBG heterojunction devices

- Optical characterizations (Raman, PL) of TMD layers.
- Post growth thermal treatments of TMDs for ex-situ doping
- Electro-optical characterization of TMD/WBG UV photodetectors

Consortium

5 partners with complementary competences in materials growth, characterization and devices

- MBE/MOCVD growth of GaN, AIN and AIGaN templates.
- MBE deposition of TMDs (MoS₂, WSe₂).
- Preliminary characterization of substrates and epitaxial layers.



- TEM, STM/STS characterization of TMD/WBG heterostructures.
- CVD growth of MoS₂ on sapphire and WBG substrates.

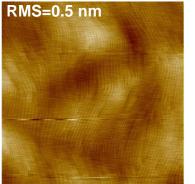
- PLD deposition of MoS₂
- Preliminary characterization of MoS₂ grown by PLD

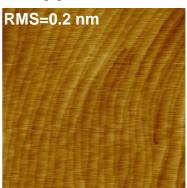
WPs structure

Gantt

			1	2	3	4	5	6	7 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	2	3	24	25	26	27	28	2	9	30 3	31 3	32 3	33 34	4 35	36
	Task	Partners	First Year						Second Year										25 26 27 28 29 30 31 32 33 34 35 36 Third Year																			
WP 1	T1.1	CNRS, SAS											D1.1																									
Epitaxial growth	T1.2	CNRS, SAS																							- I	D1.2												
	T1.3	SAS, CNRS																							- 1	D1.3	MI											
																													_									
WP2	T2.1	HAS, CNR, CNRS, SAS, U-Pa													D2.1				D2.3									D2.4			D2.6	5 N	13					
Characterizations & simulations	T2.2	CNR, CNRS, SAS,HAS, U-Pa															D2.2											D2.5										
	T2.3	CNR, U-Pa																																				D2.7
WP3	T3.1	CNR, CNRS, HAS, U-Pa																			D3.1									M2								
Processing & Devices	T3.2	CNR, CNRS, HAS																					D3.2	2										D	.3			
																_				_									_									
WP4 Management	T4.1	CNR, CNRS, SAS, HAS, U-Pa					04.1						D4.2												D	04.3												D4.4
									_											_																		
WP5	T5.1	U-Pa, CNR, CNRS, SAS, HAS			D5.1								D5.2																									
Dissemination & Exploitation	T5.2	CNRS, CNR, SAS, HAS, U-Pa																												D5.3	3							

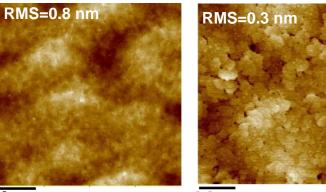
Status of activities at M12


				1 Ap	or.									31	Mai	
				202)									2	021	
					1	2	3	4	5	6	7	8 9	10	11	12	
		Partners		_		_	Fir	st Y	ear	_	_					
	WP 1	T1.1	WBG substrates and surface preparation	n CNRS, SAS											D1.1	
Epita	kial growth	T1.2	MBE growth of TMDs	CNRS, SAS												
		T1.3	PLD growth of TMDs	SAS, CNRS												
	WP2	T2.1	Materials characterization and benchmarki	ng HAS, CNR, CNRS, SAS, U-Pa	F											
Characterizati	ions & simulations	T2.2	Simulations	CNR, CNRS, SAS,HAS, U-Pa												
		T2.3	Device prototypes characterization	CNR, U-Pa												
	WP3	T3.1	Advanced processing	CNR, CNRS, HAS, U-Pa	┢	П										
Processing & Devices		T3.2	Fabrication of test devices and prototype		┢	\square										
			-			_										
WP4 N	lanagement	T4.1	Management & Risk Assessment	CNR, CNRS, SAS, HAS, U-Pa					D4.1						D4.2	
	WP5	T5.1	Dissemination	U-Pa, CNR, CNRS, SAS, HAS	┢		D5.1								D5.2	
Disseminatio	on & Exploitation	T5.2	Exploitation	CNRS, CNR, SAS, HAS, U-Pa											50.2	
Deliv n.	Title			Delivery month	Pa	artn	er i	in c	harg		Status					
D5.1	Project website	Э		M3 (31 July 2020)	CI	NR,	all			1	Done					
D4.1	,		M5 (30 Sept 2020)	CNR, all							Done					
D5.2	Plan for Disse	minatio	on	M12 (31 March 2021)	U-Pa, all							In prep				
D1.1 Report on the growth and surface preparation of hexagonal WBG substrates				M12 (31 March 2021)	C	NRS	5			I	In prep					
D4.2 1st Progress Report				M12 (1 April 2021)	C	NR,	all			In prep						


Preparation of WBG substrates for TMD deposition

- III-N templates (GaN, AIN and AIGaN) grown by MOCVD or MBE
- Preliminary characterization by AFM, XRD, XPS

3.5 µm GaN/Sapphire



2 μm

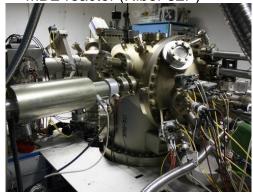
0.5 μm

100 nm AIN/Si (111)

Dislocation density ~ 5x10¹⁰ cm⁻²

Dislocation density

GaN (002) = 396 " GaN (302) = 360 "


~ 3x10⁸ cm⁻²

FWHM on XRD rocking curves: AIN (002) = 2880 " AIN (103) = 3350 "

FWHM on XRD rocking curves:

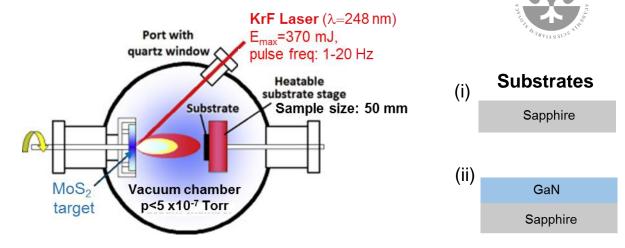
Molecular Beam Epitaxy of TMDs

MBE reactor (Riber 32P)

- MBE growth of MoS₂ and WSe₂ in progress
- Preliminary characterization by AFM, XRD, XPS

- Order and installation e-beam evaporators for Mo and W.

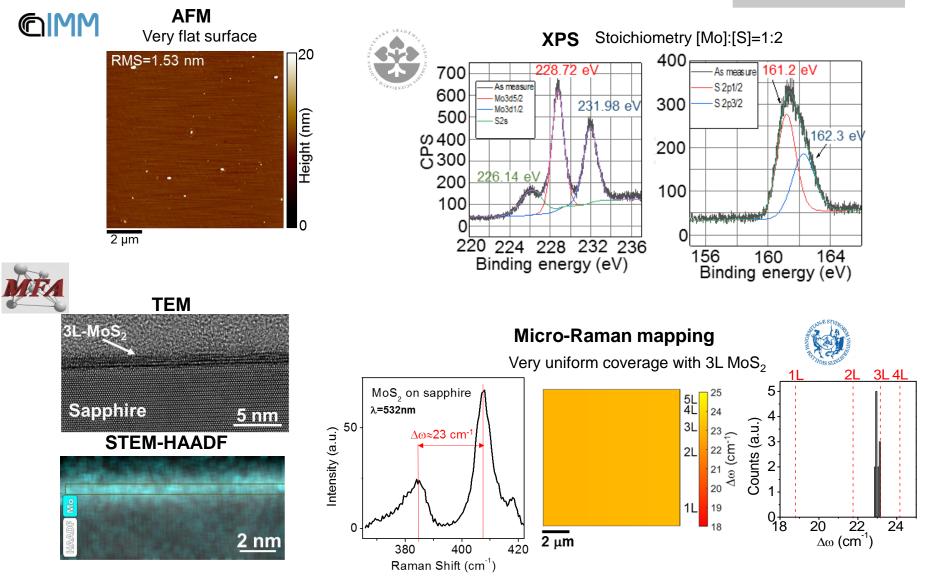
HEA


INPROGRESS

CR

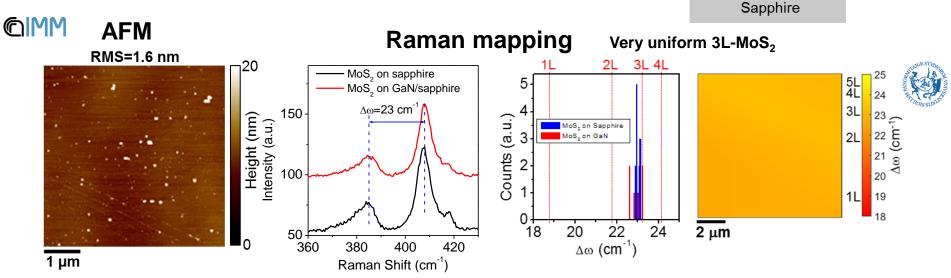
- Design and order for the H₂S gas line

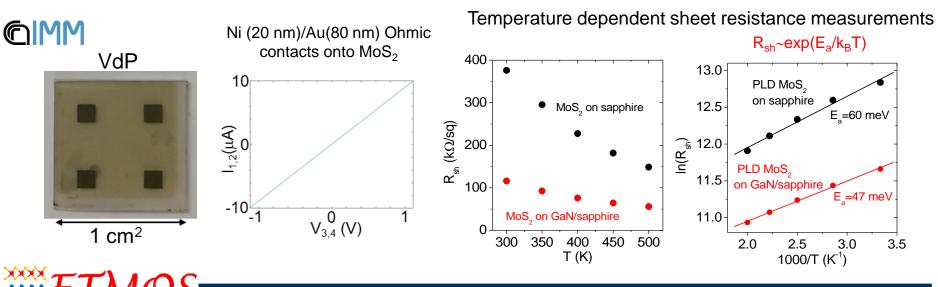
Pulsed Laser Deposition of MoS₂



Development of PLD process on sapphire

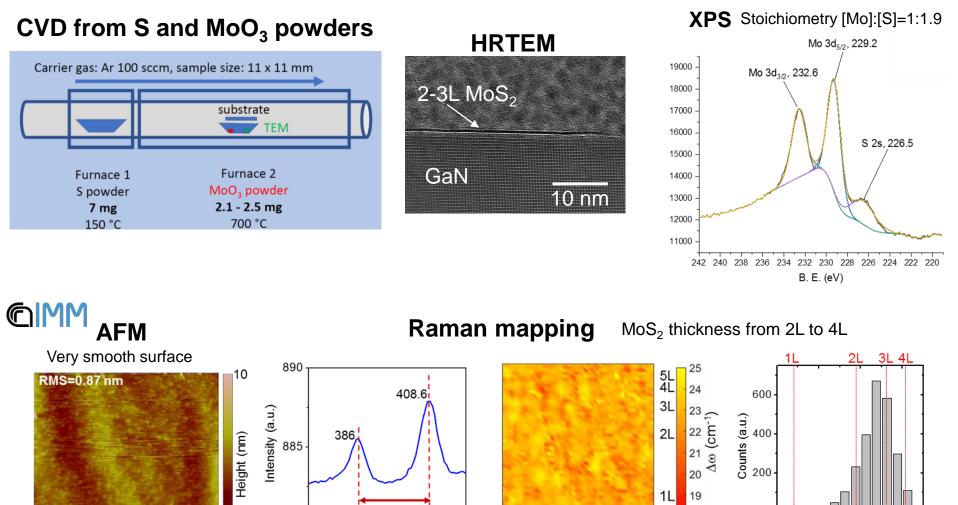
MoS₂


Sapphire


PLD of MoS₂ on GaN-on-sapphire

MoS₂

GaN



Electrical characterization

Benchmarking with other large area synthesis methods

2 µm

 $\Delta \omega = 22.6 \text{ cm}^{-1}$

370 380 390 400 410 420

Raman Shift (cm⁻¹)

880

2 μm

18

0

18

20

22

 $\Delta \omega$ (cm⁻¹)

24

Management

Project meetings:

- 1st online ETMOS meeting with all partners: 16 June, 2020
- 2nd online ETMOS meeting with all partners: 15 December, 2020

Monthly updates about progress in joint experiments between involved partners

Association of ETMOS to the Graphene Flagship

Memorandum of Understanding (MoU)

for association of a Partnering Project to the Graphene Flagship

Following the submitted application and the approval by the Graphene Flagship Management Panel, the project:

Epitaxial Transition Metal dichalcogenides Onto wide bandgap hexagonal Semiconductors for advanced electronics

(ETMOS)

becomes associated to the Graphene Flagship initiative as a Partnering Project (PP).

The following organisations shall be granted the status of Associated Member:

irector of National Graphene Institute ofessor Vladimir Falko, Director raphene Institute, o=The University of Manchester, ou, Date: 2020.02.20.14:13:59.2

Slovak Academy of Sciences, Slovenia (new PI)² Università degli Studi di Palermo, Italy

On behalf of the Graphene Flagship Core 3 Project:

On behalf of the Partnering Project:

WP1 Leader Vladimir Falko Name and signature:

pfessor Vladimin

PP coordinator Filippo Giannazzo Name and signature:

Consortium Agreement: signed by all partners on 17 October 2020; sent to FLAG-ERA Secretariat on 23 October 2020

Dissemination

ETMOS website (available since July 2020)

- Information on ETMOS consortium and scientific activities
- Dissemination of project results (publications)
- Videos of presentations
- Organized events (symposia, seminars)
- Links to FLAG-ERA and Graphene Flagship events

Dissemination

- **SPECIAL ISSUE** of Nanomaterials on "Nanoscale Electrical Characterization of Low Dimensional Materials for Electronics", Eds. Giannazzo, Celano
- BOOK CHAPTER: F. Giannazzo, E. Schilirò, R. Lo Nigro, P. Prystawko, Y. Cordier, Integration of 2D materials with nitrides for novel electronic and optoelectronic applications, Ch. 11 of *Nitride Semiconductor Technology: Power Electronics and Optoelectronic Devices* ed F Roccaforte and M Leszczynski (Weinheim: Wiley-VCH Verlag). pp 397–438

Publications:

- 1. E Schilirò, R Lo Nigro, SE Panasci, FM Gelardi, S. Agnello, Rositsa Yakimova, F Roccaforte, F Giannazzo, *Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene*, Carbon **169**, 172-181 (2020).
- F Giannazzo, R Dagher, E Schilirò, SE Panasci, G Greco, G Nicotra, F Roccaforte, S Agnello, J Brault, Y Cordier, A Michon, Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition, Nanotechnology 32, 015705 (2020)
- 3. F. Giannazzo, E. Schilirò, G. Greco, F. Roccaforte, *Conductive Atomic Force Microscopy of Semiconducting Transition Metal Dichalcogenides and Heterostructures*, Nanomaterials **10**, 803 (2020)

Conference Talks (invited):

- 1. F. Giannazzo, et al., *Nanoscale probing the electronic transport in transition metal dichalcogenides by conductive atomic force microscopy*. NanoInnovation 2020, Roma, 16 September 2020 (online).
- 2. F. Giannazzo, et al., 2D materials heterojunctions with Nitride semiconductors: from synthesis to applications, ICTF-JVC 2020 online conference, Budapest, 24 November 2020 (online).
- 3. F. Giannazzo, et al., *Conductive Atomic Force Microscopy of 2D Materials and Heterostructures for Nanoelectronics*, Nanoscientific Symposium China, 10 December 2020 (online).
- 4. S. Agnello, et al., *Graphene and transition metal dichalcogenides: from structural properties to doping,* SIF conference, 18 September 2020 (online).
- 5. Š. Chromik et al., *The properties of MOS*₂ *two-dimensional system prepared by PLD and ex-situ methods on different substrates*, 11th International Conference on Solid State Surfaces and Interfaces, Smolenice, Slovakia, 23-26 November 2020.

Responsible Research Innovation (RRI) in the ETMOS project

Science Education

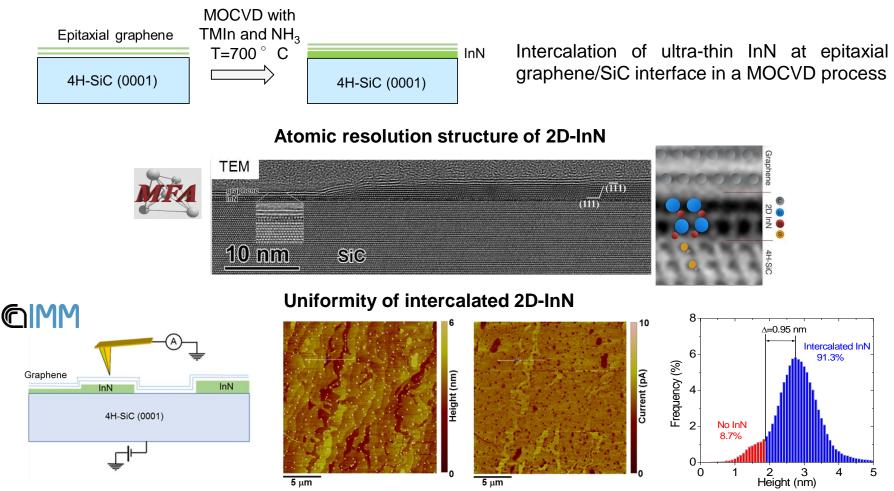
- Direct involvement of PhD students in the project's activity
- Organization of dedicated initiatives for **secondary schools and university students** in collaboration with teachers: laboratory visits, experimental demonstrations and training,...

Public engagement

- Participation to public events (e.g., "European Researchers' Night") with specific activities aimed at illustrating the societal and environmental benefits of new technologies based on advanced materials (2D materials, WBG semiconductors)
- Use of broad audience channels (interviews in newspapers/magazines, dedicated web pages in social networks Facebook, LinkedIn) to disseminate relevant project's achievements.

Engagement of stakeholders

- The CNR-IMM and CNRS-CRHEA partners of ETMOS are involved in National and EU projects on WBG semiconductors (SiC, GaN) with leading **microelectronic industries**, such as **STMicroelectronics** (Italy and France) and small medium enterprises, such as **TopGaN** (Poland).
- Representatives of these industries are involved as **ETMOS Advisory Board Members**, providing guidelines for the compatibility of processes developed in the project with industrial requirements.
- Organization of dedicated seminars/meetings for potential industrial end-users, with the assistance of the advisory board members.



Interaction with other FlagERA projects

FLAG-ERA JTC 2015 GRIFONE (coord. A. Kakanakova-Georgieva, Univ. Linkoping, Sweden)

Nitride semiconductors (InN, AIN, GaN) at the 2D limit

B. Pécz, G. Nicotra, F. Giannazzo, R. Yakimova, A. Koos, A. Kakanakova-Georgieva, *Indium nitride at the 2D limit*, Advanced Materials **33**, 2006660 (2021).

Filippo Giannazzo – FLAG-ERA Workshop, 16 March 2021

Summary

- Scientific activities of ETMOS project are almost on schedule after the first year:
 - Activities on WBG substrates preparation and characterization completed
 - Running activities on MBE and PLD growth on TMDs and their characterization
- > Dissemination of project results through papers' publications and participation to online conferences
- Successful interaction with another FlagERA project: GRIFONE
- > RRI in ETMOS: dissemination to general public; interaction with industrial stakeholders

Acknowledgements

P. Fiorenza, G. Greco, R. Lo Nigro, S. Di Franco, E. Schilirò, M. Spera, S. E. Panasci

E. Frayssinet, S. Vézian, L. Nguyen, M. Portail

I. Cora, Z. Fogarassy, M. Nemeth

F. M. Gelardi