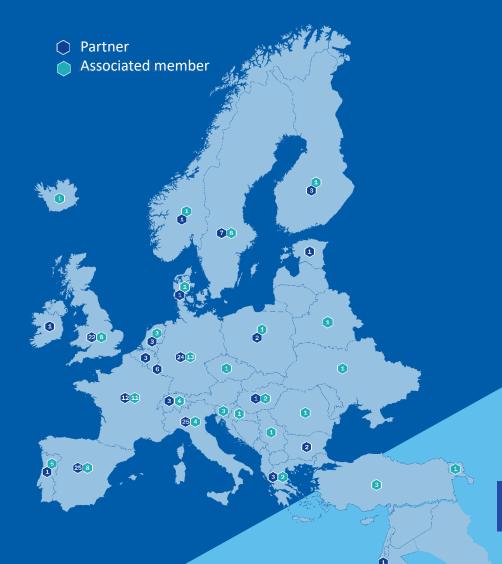


Flagship structure

Ramp-up phase, 74-142 partners, 2013-2016

Core Project 1 156 partners, '16-18

Core Project 2 155 partners, '18-20

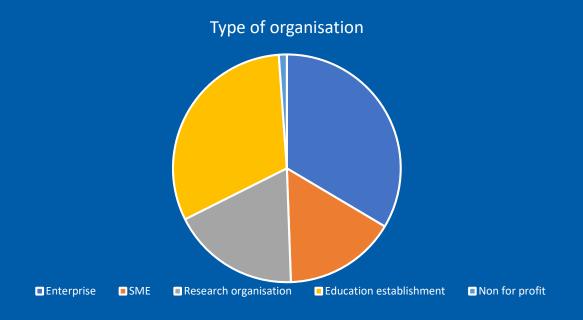

Core Projects 3-≈ 165 partners, '20-23

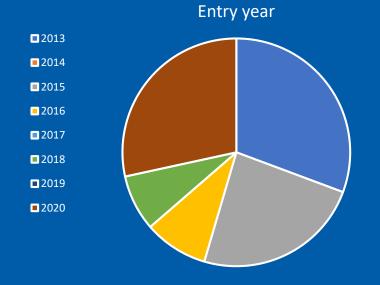
2D-EPL 11 partners, '20-24 National projects

FLAG-ERA

Regional projects

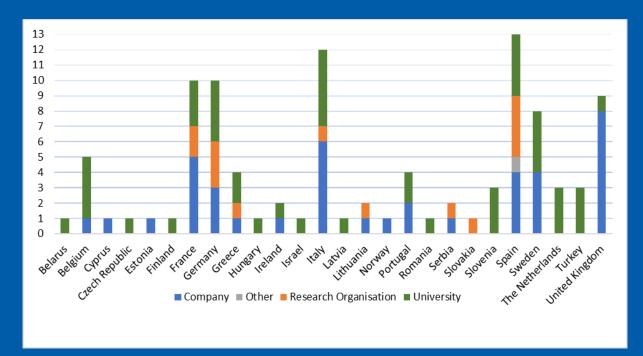
Other EU projects




the European Union

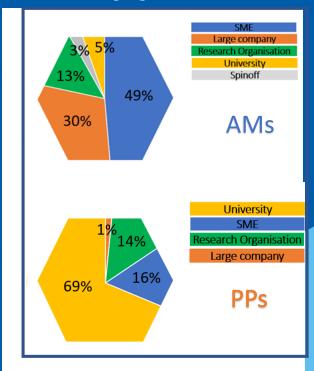
Horizon Europe? 2023-?

Flagship consortium


The Framework Partnership is evently split between commercial partners and academic/research organizations

In addition, we have 36 Partnering Projects and 101 Associated Members coming from 26 countries

The consortium has demonstrated great ability for renewal: 28% of our partners have joined this year, and only 31% have been involved since the start


OVERVIEW OF THE PARTNERING DIVISION

36 PPs
101 AMs
26 EU and Associated countries

37 individual AMs64 AMs belonging to the PPs

Recent results (Core 2, in May 2020 unless otherwise stated)

KPI	C2 realized	C2 target	Cumulative realized
Publications (26.11.)	891	703	3,864
Citations (26.11.)	5,842	660	135,428
Number of patent applications	117	62	272
Number of patents	28	13	34
Number of prototypes	149	67	250
Number of products on market	31	19	76
Number of spin-offs established	4 (5)	7	15

Some highlights

Authoritative white book on 2D materials

IOPSCIENCE Journals ▼ Books Publishing Support Login ▼ Search IOPscience content

2D Materials

TOPICAL REVIEW • OPEN ACCESS

Production and processing of graphene and related materials

Claudia Backes^{1,2}, Amr M Abdelkader³, Concepción Alonso⁴, Amandine Andrieux-Ledier⁵, Raul Arenal^{6,7,71}, Jon Azpeitia⁸, Nilanthy Balakrishnan⁹, Luca Banszerus¹⁰, Julien Barjon¹¹, Ruben Bartali¹², Sebastiano Bellani¹³, Claire Berger^{14,15}, Reinhard Berger¹⁶, M M Bernal Ortega¹⁷, Carlo Bernard¹⁸, Peter H Beton⁹, André Beyer¹⁹, Alberto Bianco²⁰, Peter Bøggild⁶⁴, Francesco Bonaccorso^{13,67}, Gabriela Borin Barin²¹, Cristina Botas²², Rebeca A Bueno⁸, Daniel Carriazo^{22,23}, Andres Castellanos-Gomez⁸, Meganne Christian²⁴, Artur Ciesielski²⁵, Tymoteusz Ciuk²⁶, Matthew T Cole²⁷, Jonathan Coleman², Camilla Coletti^{13,28}, Luigi Crema¹², Huanyao Cun¹⁸, Daniela Dasler²⁹, Domenico De Fazio³, Noel Díez²², Simon Drieschner³⁰, Georg S Duesberg³¹, Roman Fasel^{21,33}, Xinliang Feng¹⁶, Alberto Fina¹⁷, Stiven Forti²⁸, Costas Galiotis^{34,35}, Giovanni Garberoglio³⁶, Jorge M García⁶³, Jose Antonio Garrido³⁸, Marco Gibertini³⁹, Armin Gölzhäuser¹⁹, Julio Gómez⁴⁰, Pr¹⁸, Frank Hauke²⁹, Adrian Hemmi¹⁸, Irene Hernandez-Rodriguez⁸, Andreas Hirsch²⁹, ge³, Yves Huttel⁸, Peter U Jepsen⁶⁴, Ignacio Jimenez⁸, Ute Kaiser⁶⁵, Tommi Kaplas³²,

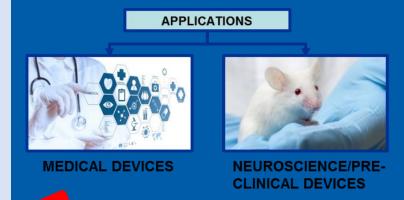
⁴¹. Andras Kis⁴¹. Konstantinos Papagelis^{35,42}. Kostas Kostarelos⁴³.

Aleksandra Krajewska^{26,73}, Kangho Lee³¹, Changfeng Li⁴⁴, Harri Lipsanen⁴⁴, Andrea Liscio⁶⁹,

22661 Total downloads

Turn on MathJax

Share this article


/PDF

Some highlights

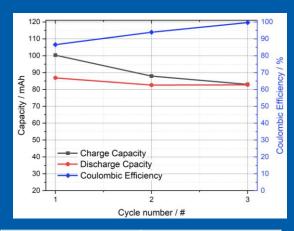
GRAPHENE FLAGSHIP

First products in biomedical technologies

Commercialisation of first two products in two different markets by two different industrial WP5 partners

Commercialisation of *wired* 16 and 64 channel electronic systems for **gFETs**

Commercialisation of *wireless* gFET epicortical probe



Some highlights

GRAPHENE FLAGSHIP

High-Energy CoinPower® Cell

Parameter	Value
Total Capacity*	88 mAh (+35%**)
Total Energy*	300 mWh (+25%**)
1 st CE	86,0%
3 rd CE	99,7%

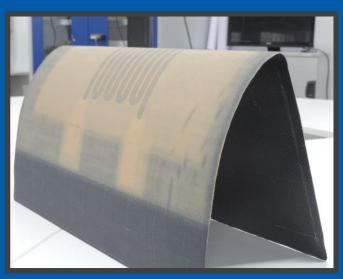
- *0.1C Discharge
- ** compared to benchmark

Applications

.

Insulir

In SH5, the partners developed a high-energy silicon/graphene prototype that outperforms SotA graphite-based cells by up to 35% in capacity and 25% in energy density.


https://graphene-flagship.eu/news/Pages/Graphene-enabled-silicon-based-lithium-ion-battery-boosts-capacity-by-30.aspx

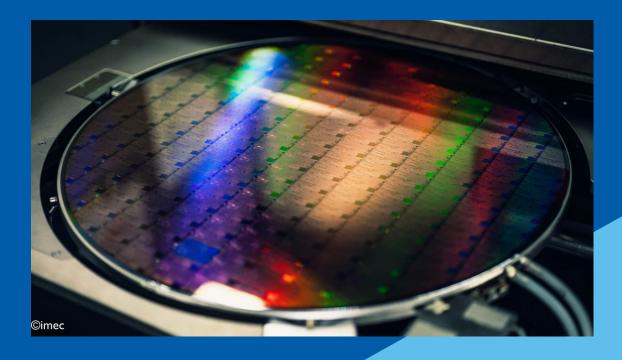
Fitness Tracker

Some highlights De-/ Anti-icing Demonstrator for airplanes

- Co-curing of graphene serpentine in complex SA LE shape
- No issues identified with leading edge shape, good adaptation of graphene serpentine to complex shape
- Confirmation of graphene serpentine heating capability in curve shape
- Patent submitted: 14739 Graphene flexible paper for IPS patent CO-55907 V5. Application number is 19382383.8.

Evaluation / testing of SA LE demonstrator @ Room Temperature

- Different voltages (10, 20, 30, 50 & 85V)
- Sheet resistance: 20 Ohm
- Homogeneity ok, but room for improvement (hotter areas)
- Good / quick heating
 - \rightarrow 70°C in 60 seconds, at 30V & 1,5A
 - \rightarrow 50°C in 30 seconds, at 85V & 4A
- Maximum specific power: 13 KW/m² at 85V & 4A



Some highlights Launch of experimental pilot line 2D-EPL

The 2D-EPL started on October 1, 2020, and had a digital kick-off on October 8. The 2D-EPL project involves 11 partners from Belgium, Finland, Germany, Spain and the UK.

There is already large industrial interest in the 2D-EPL as shown by its Industrial Advisory Board that today includes 10 European companies.

Dissemination activities

Visit by EC Executive Vice President Margarethe Vestager

"It is incredible to see how well the project is administered, coordinating even a large group of academic institutions can be a challenge, but adding industrial partners successfully into the mix is remarkable."

"the Graphene Flagship is money well spent"

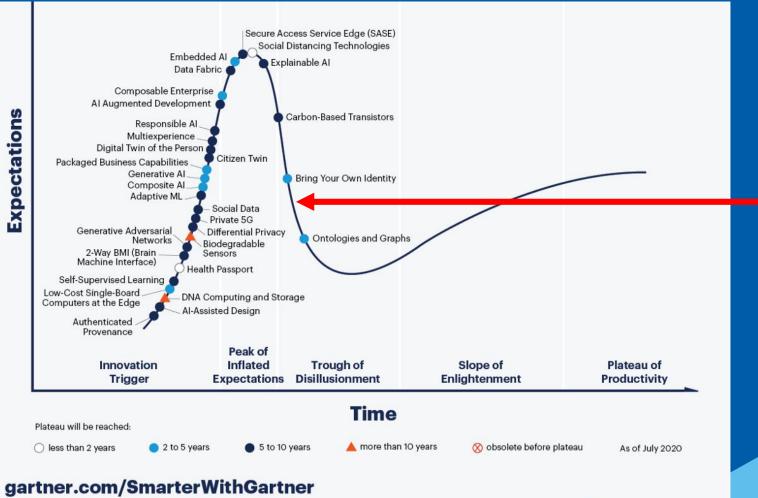
Due to Covid19, most dissemination activities have moved online for the time being:

- Women in Graphene (virtual reality implementenation)
- New "Graphene for" series
 - Energy storage (June)
 - Research, Innovation, Collaboration (September)
 - Health (November)
 - Standardization (January)

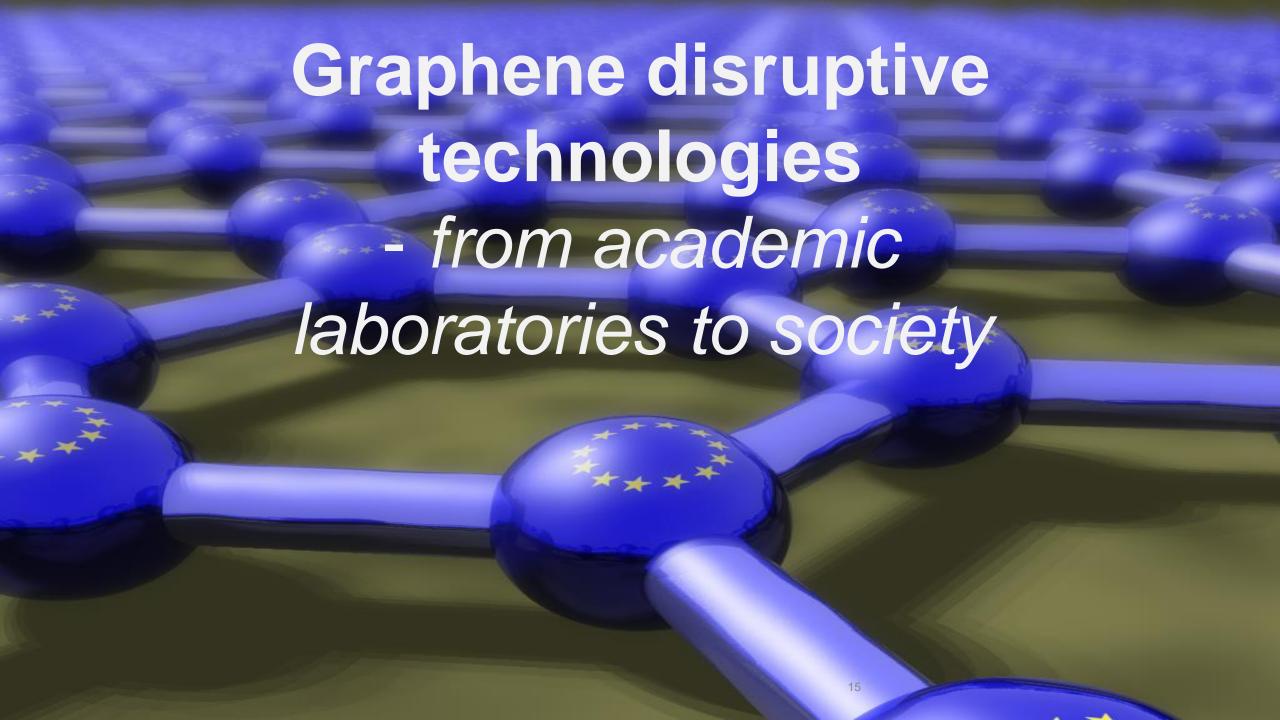
Impact of Covid19

- The impact has been and continues to be quite substantial but uneven in the consortium
- In the first 6 months, the Core 3 partnership has used about 10% of its resources, which is 2/3 of the expected usage: we will be applying for a cost neutral 6 month extension of the Core 3 project
- At this time we do not expect that the 2D-EPL project will ask for an extension, but the situation may change if the pandemic persists
- The impact is particularly strong on our international workshops and conferences, which are all either
 on hold or have been converted to digital formats. This puts substantial strain on our staff working on
 event management, and I am impressed by how they cope with the challenging situation

Horizon Europe



- We are convinced that the most appropriate way to implement the activities of the Graphene Flagship in Horizon Europe is to keep the coherence that has allowed us to reach remarkable results in the last 7 years, demonstrated how to cross the valley of death from academia to industry.
- Compared to the RIAs+CSA model included in the latest circulate HE work programme draft, the FPA+SGA
 model has several advatanges. It is the most efficient way to implement large scale research actions, enables
 the creation of a large industrial ecosystem needed to bring new technologies to society, and it has
 demonstrated an ability to renewal by continuously adding new competence to the consortium.
- If legally necessary, the FPA+SGA structure may be supplemented by additional RIAs, which would naturally become Partnering Projects and benefit from many of the support functions from the FPA+SGA, if they so desire.
- We are concerned by the prolonged negotiations on the Horizon Europe budget, which delays our planning process, causes uncertainty in the consortium and leads to internal competion rather than collaboration.


Where we are as a technology?

Gartner.

