

MX-OSMOPED

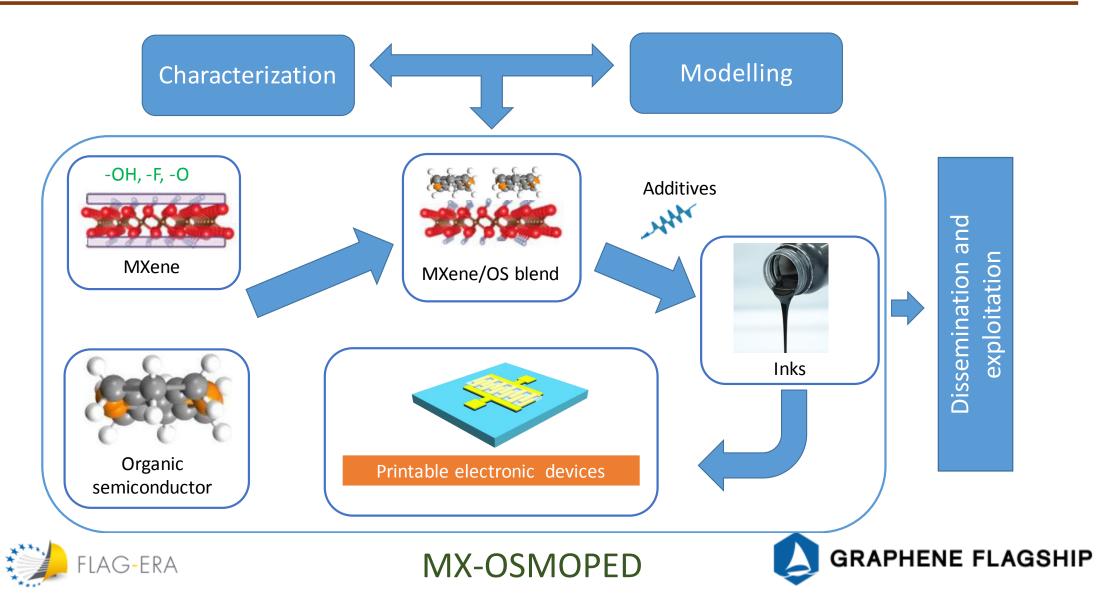
MXene-organic semiconductor blends for highmobility printed organic electronic devices

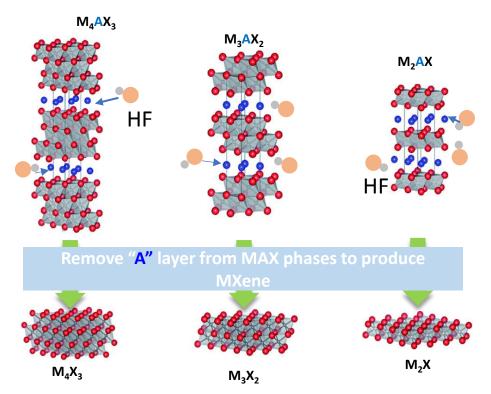
Gvido Bratina

Laboratory for organic matter physics, University of Nova Gorica, Slovenia

- Laboratory for organic matter physics, University of Nova Gorica, Slovenia
- Laboratory for Chemistry of Novel Materials, University Mons, Belgium
- Institute of Supramolecular Science and Engineering, University of Strasbourg, France
- Department of Chemistry and Food Chemistry, Dresden University of Technology, Germany

Goals


- The development of environmentally friendly etching methods (no HF) to obtain high-quality MXenes.
- Formulation of a MXene/OS ink capable of delivering organic thin film transistors with μ > 50 cm²/Vs and on/off ratios >10⁵.
- Devise a protocol for device fabrication by printing on flexible substrates.


Workflow

MXene synthesis and blend preparation

Responsible partner: **TUD**

- Source materials:
 - Ti₃AlC₂, Nb₂AlC, and V₂AlC
- Preparation of blended inks with organic semiconductors, e.g.:
 - [1]benzothieno[3,2-b][1]benzothiophene
 (BTBT)
 - dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT)

Structure and morphology of thin films

Responsible partner: ISIS

- Methods
 - High-resolution Electron
 Microscopy
 - Atomic Force Microscopy
 - Kelvin Probe Force Microscopy
 - Grazing Angle X-ray diffraction
 - Fourier Transform Infrared Spectroscopy
 - X-ray photoelectron spectroscopy
 - Thermal Gravimetric Analysis

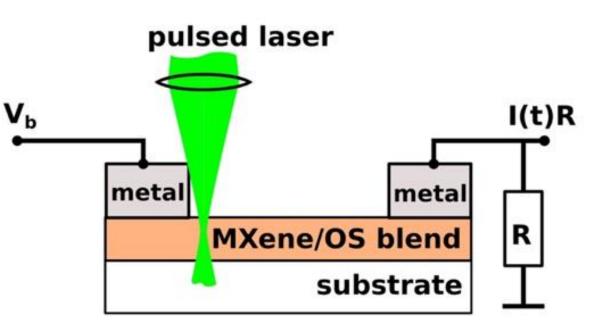
- Thin film preparation, all liquidbased:
 - drop casting
 - spin coating
 - spray coating
 - ink-jet printing

Modelling

Responsible partner: **UMONS**

- Structural and electronic reorganization at MXene:OS interfaces.
 - Heterojunctions will be modeled by merging slabs of MXene and OS
 - Use of van der Waals corrected Density Functional Theory (DFT) calculations implementing periodic boundary conditions
- Charge transport simulations in MXenes:
 - OS hybrid materials parameterization of Tight-Binding (TB) models against DFT electronic structure calculations for:

- MXenes and OS in their pristine state and in presence of defects
- the corresponding hybrid materials.



Charge transport characterization

Responsible partner: LOMP

- Methods:
 - Current-voltage measurements in organic thin film transistors
 - Time-of-flight photocurrent measurements

Connection to Flagship work packages

- WP 13 Functional Foams and Coatings (main)
 - contribution in the area of electronics, flexible electronics, and supercapacitors.
- WP 1 Enabling research
 - modelling protocols of electronic properties of MXene/OS blends, charge transport properties of blended thin films.
- WP 3 Enabling materials
 - understanding of the relationship between synthesis parameters and properties in 2D materials
- WP 9 Flexible Electronics 🜘
 - printing properties of inks whose formulation is based on different concentrations of 2D materials (MXenes) and OSs.

