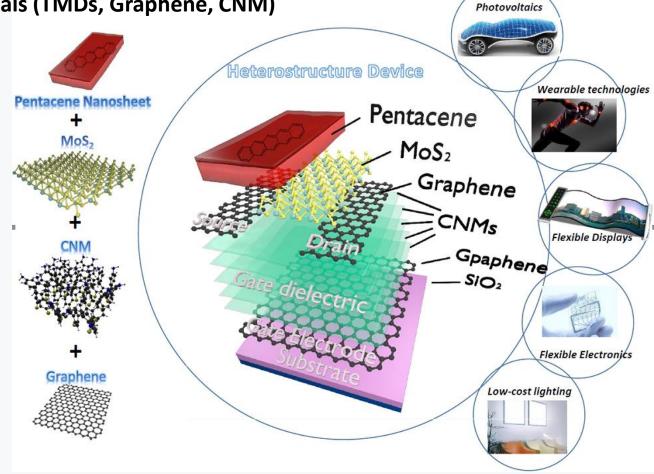
Friedrich-Schiller-Universität Jena

Heterostructures of 2D materials and organic semiconductor nanolayers (H2O)

Consortium:

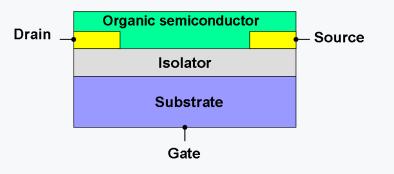
- Prof. Andrey Turchanin, Dr. Antony George* *Friedrich Schiller University Jena, Germany (Coordinator)*
- Dr. Bert Nickel Ludwig Maximillian University Munich, Germany
- Prof. Sergey Kubatkin, Dr. Saroj Prasad Dash, Dr. Samuel Lara Avila *Chalmers University of Technology, Gothenburg, Sweden*
- Dr. Michel de Jong University of Twente, Enschede, Netherlands



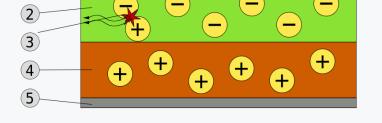
Introduction

van der Waals Heterostructures for Device Applications

- Organic Semiconductor Nanosheets (e.g.: Pentacene)
- 2D materials (TMDs, Graphene, CNM)



Organic Semiconductors (OSC)

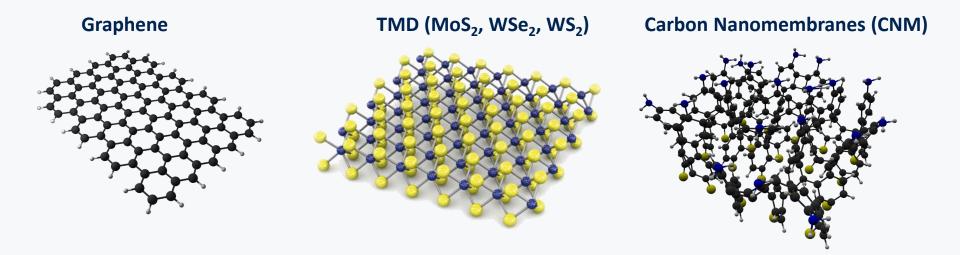

- Low cost technology
- Compatibility with flexible plastic substrates
- Low temperature processing (60-120°C)
- Adjustable electronic characteristics by chemical tuning
- Compatible for solution monitoring and innovative applications such as biodegradable electronics

(1

 Charge carrier mobility in organic devices ranging from 10⁻⁵ to 1 cm²/Vs **Organic Light Emitting Diode (OLED)**

Schematic of a bilayer OLED: 1. Cathode (–), 2. Emissive Layer, 3. Emission of radiation, 4. Conductive Layer, 5. Anode (+)

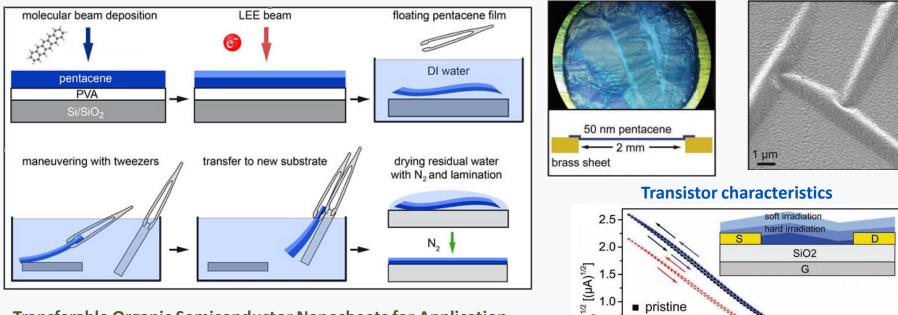
- Commercialized technology, several products in market
- Companies Involved: BASF, Bayer, Philips, Merck, Novaled, Samsung, Sony, LG etc.
- Products: High Resolution Displays, Medical Devices, OLED Lighting Panels, Organic Solar Cells
- Market size of 45 Billion USD (2017)



2D materials

- Atomically thin single layer materials
- Available in metallic (graphene), semiconducting (MoS₂, WS₂, WSe₂) and insulating (hBN, CNM) forms
- Flexible, transparent and light weight
- High charge carrier mobility and good optoelectronic characteristics
- Compatibility with plastic substrates
- Promising materials for emerging electronic, optoelectronic, energy and sensing device applications

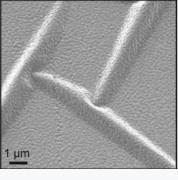
Carbon Nanomembranes, A. Turchanin and A. Gölzhäuser, Advanced Materials, 28, 6075, 2017 Lateral Heterostructures of Two-dimensional Materials by Electron-beam Induced Stitching, A. Winter, A. George, A. Turchanin et al., Carbon, 128, 106, 2018

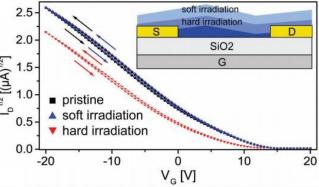

Challenges in building 2D material-OSC vdW heterostructures

- Organic Semiconductor structural quality depends on the growth substrate and growth conditions.
- Direct deposition of OSC layers on 2D materials may result low structural quality (low crystallinity)
- Lower interfacial quality resulting in poor performance of the heterostructure devices
- A viable solution : Transferrable organic semiconductor films to any arbitrary substrate

Transferable OSC nanosheets

- Pentacene films (20-50 nm) can be grown with high crystallinity on polyvinyl alcohol (PVA) thin films.
- After the growth on PVA, the top molecular layers (~ 5 nm) are cross linked by e-beam irradiation.
- The crosslinked top layer stabilizes the film and become transferrable to any arbitrary substrate • without loosing its structural/electronic quality.
- The technique can be extended to other OSC materials

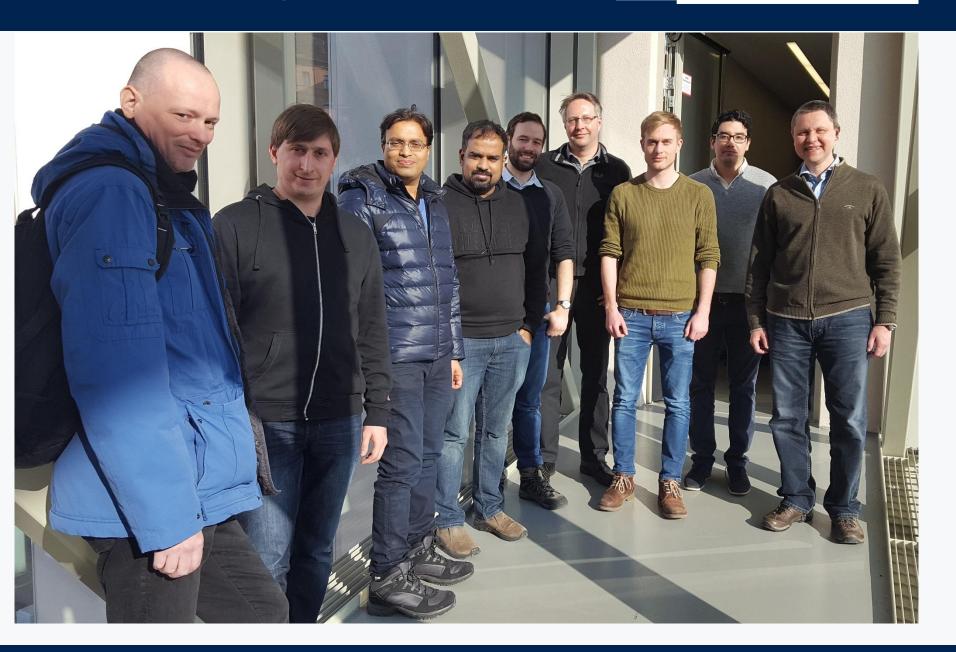

Fabrication process of transferrable OSC nanosheets



Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices, S. J. Noever, A. Turchanin, B. Nickel et al., Advanced Materials, 23, 1606283, 2017

Optical microscopy

HIM image



Consortium Partners and Expertise

Friedrich Schiller University Jena, Germany	Ludwig Maximilian University Munich, Germany	Chalmers University of Technology, Sweden	University of Twente, Enschede, Netherlands
Expertise: 2D materials synthesis, characterization, nanofabrication, nano (opto)electronic devices	Expertise: Organic semiconductors, photocurrent spectroscopy, organic (opto)electronic devices	Expertise: Advanced nanofabrication for complex device architectures, advanced transport measurements, device physics	Expertise: Synchrotron based spectroscopic studies of nanolayers and heterostructures
Facilities: CVD growth, E-beam processing, Optical microscopy, Raman Spectroscopy, XPS, HRTEM, SEM, cryogenic vacuum probe station, sensor testing, cleanroom nanofabrication	Facilities: Organic semiconductor processing, laser writing lithography, probe station, photocurrent spectroscopy	Facilities: Cleanroom nanofabrication, cryogenic vacuum probe station	Facilities: ARPES, ARUPS, XPS

H2O Kick-off meeting in Jena (1st March 2018)

