FLAG-ERA JTC 2017 Project

CO₂-DETECT Waveguide-Integrated Mid-Infrared Graphene Detectors for Optical Gas Sensor Systems

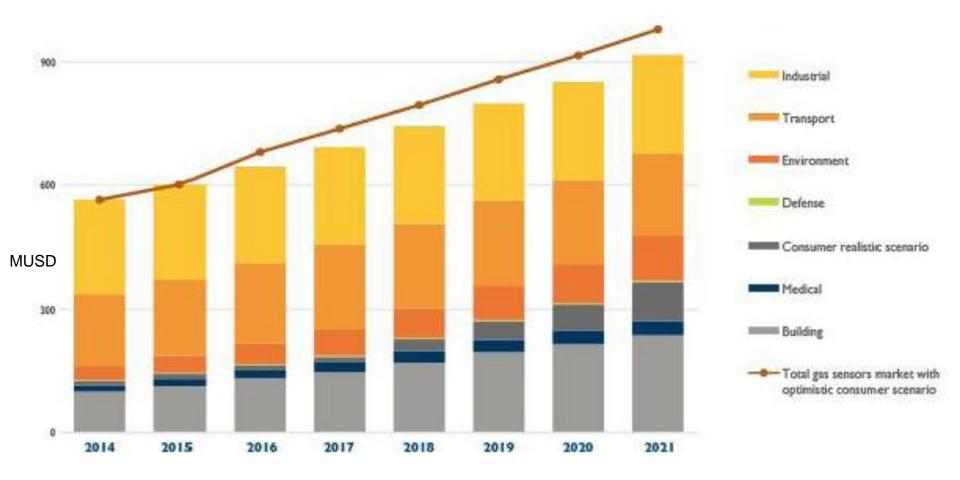
Frank Niklaus, KTH

KTH Royal Institute of Technology; Sweden

SenseAir AB, Sweden

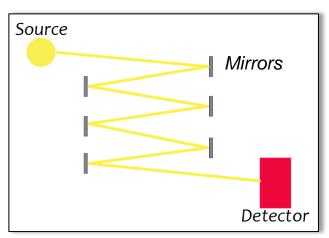
AMO GmbH

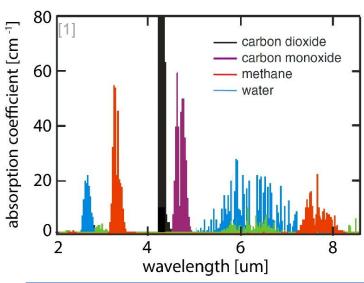
Catalan Institute of Nanoscience and Nanotechnology



Outline

- Application Background
- Project Overview
- Project Partners


Gas Sensor Markets



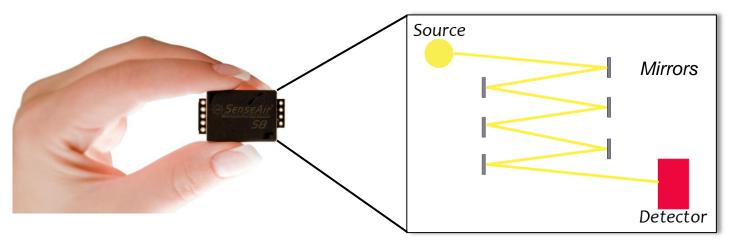
https://www.i-micronews.com/report/product/gas-sensor-technology-and-market.html.

Optical Gas Sensors

Nonedispersive Infrared optical gas sensing

Benefits of optical sensors

- High selectivity
- Long term stability


Drawbacks of current optical sensors

- High power use
- Large size
- Discrete components

[1] Hodgkinson, Jane, and Ralph P Tatam. "Optical Gas Sensing: A Review." *Measurement Science and Technology* 24, no. 1 (January 1, 2013): 12004.

Vision of personal gas sensors

Smallest currently commercially available optical CO₂ sensor

Vision of personal miniaturized multi-gas sensors

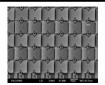
Miniaturized, low power gas sensors

Integration into small, portable devices

Senseair

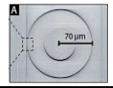
Work Package Overview of CO₂-DETECT

KTH Department of Micro and Nanosystems


Head: Prof. Göran Stemme

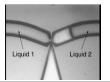
Micro and Nanofabrication

Prof. Frank Niklaus



Micro-Optic Sensors

Ass. Prof. Hans Sohlström and Ass. Prof. Kristinn Gylfason

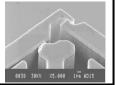


Lab-on-Chip / Polymers

Prof. Wouter van der Wijngaart

Medical MEMS

Ass. Prof. Niclas Roxhed



RF and Microwave MEMS

Prof. Joachim Oberhammer

Senseair AB, Sweden

Senseair is a leading global provider of air and gas sensing technology (CO₂, alcohol etc.).

Our purpose it to make sense of air by providing the best possible measurement solutions, services and intelligence.

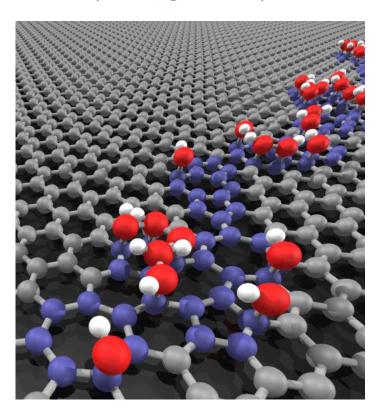
RWTH Aachen University & AMO GmbH

RWTH Aachen University

- Large European Technical Univ.
- 45.000 students
- Triangle:Germany / Belgium / Netherlands
- Chair of Electronic Devices (10)

AMO GmbH

- High-Tech SME / Institute (non-profit)
- Research Foundry
- 400 m² clean room
- 40 staff members
- Key technologies
 - Silicon Technology Base
 - Nanofabrication (NIL, E-Beam, IL)
 - New Materials Integration (highk/metal gate, graphene, 2D)
 - Applications
 - Nanoelectronics
 - Nanophotonics
 - Integrated Sensors


13.03.2018 ImagineNano 2018

Research at ICN2: Transport Simulations

Real-space quantum transport and molecular dynamics

Impact of gas adsorption

How will CO₂ adsorption impact the transport properties of the graphene layer?

Thank you for your attention ...

Questions?

