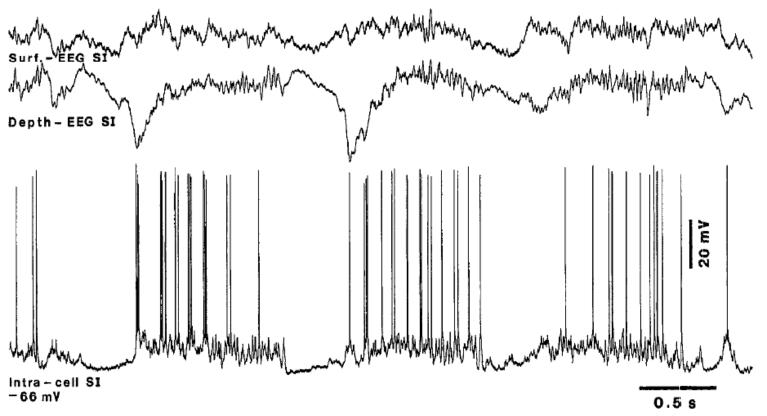


Joint Transnational Call 2015

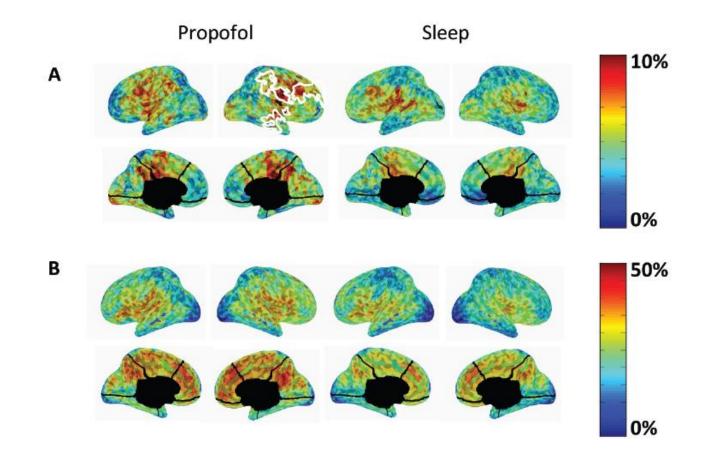
SloW-Dyn: Slow Wave Dynamics: from experiments, analysis and models to rhythm restoration

Main area: Theoretical and Mathematical Foundations of Neuroscience Keywords: Slow oscillations; cortical models; Sleep restoration; non linear analysis; Up states; Up and Down states; Neuromorphic models; Slow waves; Pyramidal cells; Ageing; Slow wave sleep; Information theory; Causal analysis; Multiscale modeling Duration (months): 36 Total project funding: € 662 795

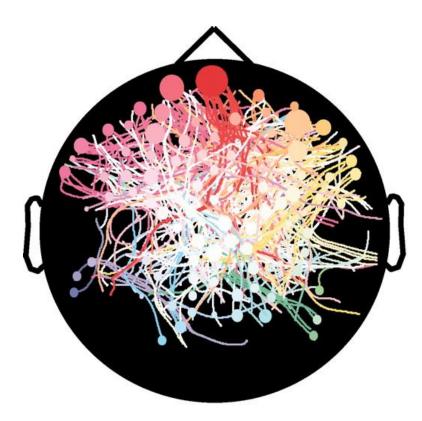


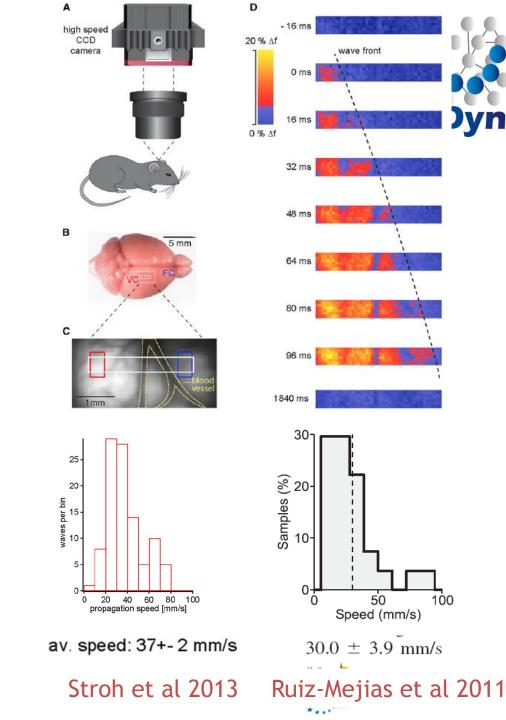
Data based model of Slow cortical oscillations

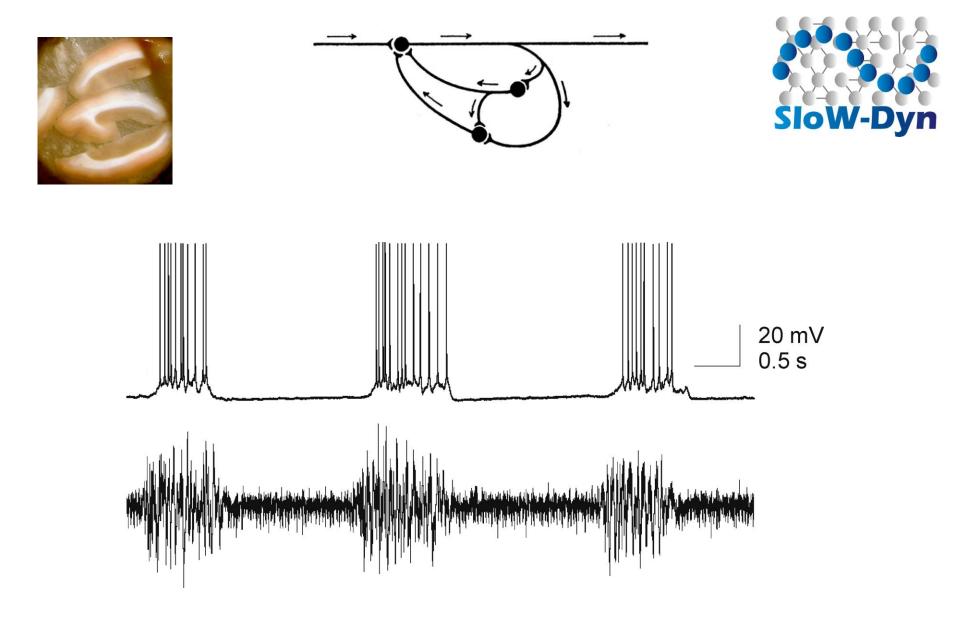
Slow Wave activity-Background

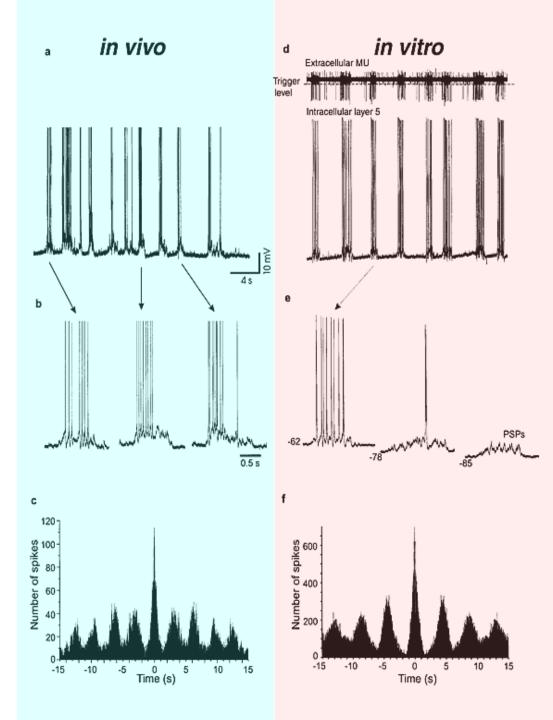


Steriade, Amzica, Contreras. J. Neurosci. 16:392, 1996






Murphy, M., et al (2011). Propofol anesthesia and sleep: a high-density EEG study. Sleep, 34(3), 283.


Marcello Massimini, Reto Huber, Fabio Ferrarelli, Sean Hill, and Giulio Tononi The Journal of Neuroscience, August 4, 2004, 24(31):6862-6870;

Sanchez-Vives & McCormick Nat Neurosci 3: 1027, 2000

Slow wave activity has been proposed as the default mode of the cerebral cortex

Sanchez-Vives, M. V., & Mattia, M. (2014). Arch Ital Biol, 152, 147-155.

Sanchez-Vives & McCormick Nat Neurosci 3: 1027, 2000

Aim of the project

- Data based model of Slow cortical oscillations
- Understanding network mechanisms
- Multi-scale experimental data
- Study of transformation of Slow Wave Activity
 - Natural ageing in humans
 - Aging and associated neurodegenerative diseases (mouse models)

Partners and participants involved in the realisation of the project

Partner	Country	Insitution/Department	Name of the Principal Investigator	Name of the co- Investigators
1 Coordinator	Spain	IDIBAPS	Maria V. Sanchez- Vives	
2	France	CNRS	Alain Destexhe	
3	Italy	ШΤ	Stefano Panzeri	Tommaso Fellin
4	Spain	UPF	Rubén Moreno-Bote	
5	USA	UChicago	Nicolas Brunel	
6	France	DREEM (SME)	Mathieu Galtier	

Multi scale approach - Micro

Partner: IIT - Tommaso Fellin

- State of art techniques to identify the participation of genetically identified cell types in slow waves.
- Generation of highly valuable detailed information about local circuit contribution.

Multi scale approach - Meso

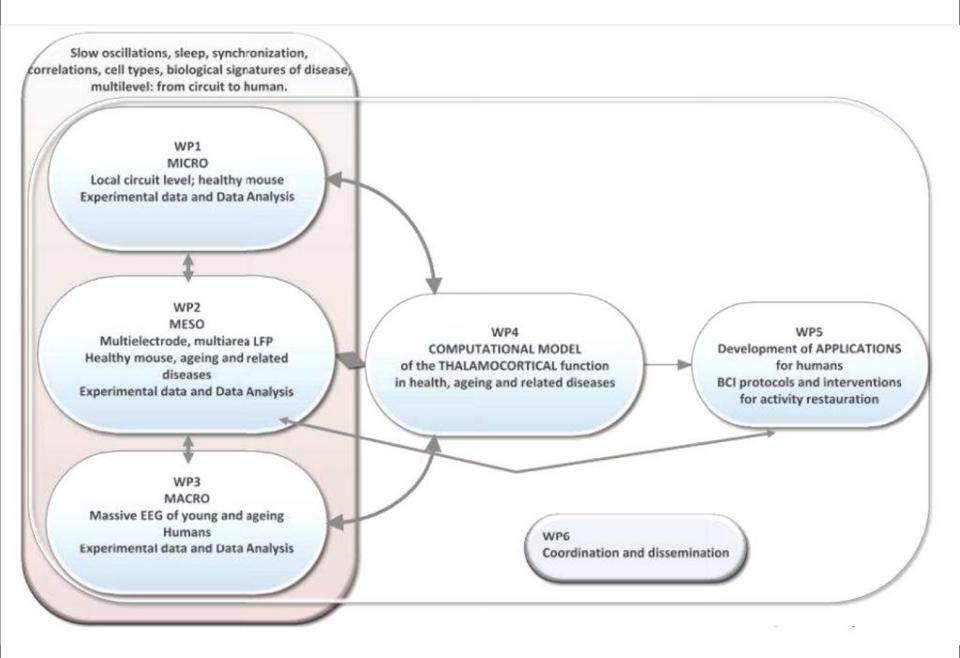
Partner: IDIBAPS – Maria V. Sanchez-Vives

- Study of slow waves properties and 2D & 3D propagating waves mice at different ages, including 2 models of neurodegenerative diseases (SAMP-8 and APP-PS1)
- Preliminary evidence of transformation of slow oscillatory pattern in early ageing.

Multi scale approach - Macro

Partner: DREEM

- Generation of largest sleep data base.
- EEG big data from slow wave sleep of (1000s) of individuals of different ages.
- Achieved through distribution of DREEM EEG head band.
- Valuable information about the transformation of slow waves during human ageing.


Theoretical analysis

Partner: IIT, UPF, CNRS, DREEM

 Development of new and *ad hoc* analytical tools to explore multiscale correlations, information transfer and other aspects generated from multilevel data.

Model development

Partners: CNRS, IIT, UChicago, DREEM

- Creation of a biophysically realistic model of thalamocortical function in health, ageing and related diseases.
- Model of adaptive exponential (AdEx) integrate-and-fire (IF) cells which is fully compatible with existing neuromorphic implementations in HBP.
- Beyond state-of-art by fitting not only 1st, but also 2nd order structure of spatio-temporal properties of slow-wave oscillations in young and ageing subjects.

Aim of the project

- Data based model of Slow cortical oscillations
- Understanding network mechanisms
 - Natural ageing in humans
 - Aging and associated neurodegenerative diseases (mouse models)
- Multi-scale experimental data
- Restoration of young sleep

LETTERS

Boosting slow oscillations during sleep potentiates memory

Lisa Marshall¹, Halla Helgadóttir¹, Matthias Mölle¹ & Jan Born¹

J. Sleep Res. (2013) 22, 22-31

Induction of slow oscillations

Induction of slow oscillations by rhythmic acoustic stimulation

HONG-VIET V. NGO^{1,2}, JENS C. CLAUSSEN¹, JAN BORN^{3,4} AND MATTHIAS MÖLLE^{3,4}

Neuron Article

¹Institute for Neuro- and Bioinformatics, University of Lübeck, Germany, ²Graduate School for Computing in Medicine and Life Sciences, University of Lübeck, Germany, ³Department of Neuroendocrinology, University of Lübeck, Germany and ⁴Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany

Auditory Closed-Loop Stimulation of the Sleep Slow Oscillation Enhances Memory

Hong-Viet V. Ngo,^{1,2,3} Thomas Martinetz,² Jan Born,^{1,4,*} and Matthias Mölle^{1,4} ¹Institute of Medical Psychology and Behavioral Neurobiology, and Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany ²Institute for Neuro- and Bioinformatics ³Graduate School for Computing in Medicine and Life Sciences ⁴Department of Neuroendocrinology University of Lübeck, 23538 Lübeck, Germany *Correspondence: jan.born@uni-tuebingen.de http://dx.doi.org/10.1016/j.neuron.2013.03.006

Restoration of young sleep

Partners: DREEM, IDIBAPS, UPF

- Model the role of external stimulation (auditory clicks) to predict impact of "pattern-modulation stimulation" protocols in diseased subjects.
- Refinement and optimization of stimulation protocols to restore young sleep in ageing individuals.
- Development of application for humans accessible to society through DREEM.

THANK YOU!

Human Brain Project