CHArting Multi-areal Visual Perception in the Mouse

ChampMouse

J. Alexander Heimel

FlagEra Kick-off meeting Budapest, April 13, 2016

First step of object recognition Object segregation

Primate and human data

Aim

use a new figure-ground segregation task to chart visual processing in the mouse brain

Objective 1 – Behavioral task

devise a task where head-fixed mice decide if a figure is shown on a background.

Objective 2 – Recording neural activity at multiple scales and areas

measure the neural correlates of figure-ground segregation using electrophysiology and calcium imaging (wide field and 2-photon)

Objective 3 – Interfere with neural processing

determine by optogenetic silencing which areas perform the task.

Objective 4 – Modeling the neural interactions

use our data, with data from Allen Institute and HBP, to create a multi-area, multi-scale model of the mouse visual system

Consortium

Amsterdam

J. Alexander Heimel Pieter Roelfsema

Leuven

Hans op de Beeck

Barcelona

Gustavo Deco

Vacancy

William Redmond

Andrea Insabato

Task development

Roelfsema Op de Beeck

Electrophysiology Calcium imaging (wide field)

Op de Beeck

Heimel

Calcium imaging (2 photon)

Roelfsema

Interference Optogenetics

Heimel

Roelfsema Op de

Op de Beeck

Modeling

Impact

Better understand visual processing across multiple levels and areas

Links to main aims of HBP

- Perform Targeted Mapping of the Mouse Brain and the Human Brain
- Develop a Multi-Scale Theory for the Brain

Primary interactions with HBP

- HBP Sub-project 1 "Strategic Mouse Brain Data" can guide our modeling of the mouse brain's algorithm to segregate a figure from the background.
- HBP Sub-project 5 "Neuroinformatics" delivering ICT Platforms, tools, Methods and Data Available to the Scientific Community
 - Neuroinformatics platform:
 - Downloading annotated maps of the mous brain
 - Uploading neural activity using the voxel brain API and ephys data
 - Uploading multiscale model
 - Use 3D viewers to visualize the data
 - HBP Sub-project 5 Brain Simulation Platform
 - Data can be used to feed or validate brain simulations