

∎institute

IMdea

nanoscience

Joint Transnational Call 2015

Tailoring Spin-Orbit effects in graphene for Spin-Orbitronic applications Rodolfo Miranda

raphene

UMPHY CNRS-THALES

Scientific background, key challenges and potential impact

Creating a giant Spin-Orbit Coupling in graphene

- Hosting magnetic skyrmions
- Spin Hall Effect: Production or detection of pure spin currents

d **raph**ene

FLAG-ERA

Pb-intercalated Graphene/Ir(111)

Inducing a giant Spin-Orbit Coupling in graphene G/Pb/Ir

- By intercalation of suitable elements (Pb)
- By proximity with semiconducting WSe2
- By proximity with Topological Insulators

Distance (nm)

F. Calleja et al, Nature Phys. <u>11</u>, 43, 2015

G/Ir

Pb-intercalated Graphene/Ir(111)

ene

F. Calleja et al, Nature Phys. <u>11</u>, 43, 2015

Magnetic skyrmions

Topologically protected spin configurations

Lorentz microscopy

Yu et al, Nature 2010

Magnetic skyrmions

- Originate from chiral interactions (DMI) induced by SOC and breaking of the inversion symmetry in lattices or at interfaces
- DMI generated by indirect exchange between two spins and an atom with strong SOC
 Dzyaloshinskii, Sov. Union JETP, <u>5 (1957)</u> 1259
 Moriya, Phys. Rev. <u>120</u> (1960) 911

S-

 $H_{\rm DM} = -\mathbf{D}_{12} \cdot (\mathbf{S}_1 \times \mathbf{S}_2)$

A. Fert and P.M. Levy, PRL, <u>44</u>, (1980)1538

 Ultrathin Ferromagnetic metal (e.g. Co) with out of plane anosotropy/ Material with large SOC (eg. Pb, Pt)

In a 2D ferromagnet with uniaxial (perpendicular) anisotropy (K), a non-negligible DMI results in a skyrmion structure

Larger D/J ratio (at interfaces), Smaller skyrmion size

а

с

Skyrmions on the move

Skyrmions are particle-like spin configurations that can be moved by Spin Torque b

Small (10⁶ A/m²) depinning current density

Small (10⁻⁴ m/s) velocity

Micromagnetic simulations

DMI 1.4 meV/atom

d T = 0 ns 57 nm 57 nm57 nm

Skyrmion-based Racetrack Memory

Graphene Skyrmionic systems

graphene DML Pb 0-10 ML FM Pt (111) / MgO(111)

Control of Spin-Orbit Coupling in graphene as a source of large chiral exchange interaction (Dzyaloshinskii-Moriya Interaction, DMI),

leading to stabilization and manipulation of magnetic skyrmions

and/or as efficient source of large pure spin current by Spin Hall Effect (SHE).

- Production of the SOgraph building blocks (MBE, CVD, sputtering)
- Characterization (magnetic, transport, dynamics, etc)
 - In-situ: LEED, XPS, STM
 - Ex-situ: v-MOKE, VSM, XAS, XMCD, MR-OKE, SHE, ISHE, STT
- Imaging of skyrmions on graphene (sp-STM, MFM, XMCD, holography)
- Modelling
- SOgraph prototype

Prototype device for local and non local measurements

Pure spin and Spin-Charge conversion device

Consortium partners and specific role

Coordinator

Preparation of SOgraphene samples on model and scalable systems, In-situ Characterization (XPS/UPS) and Imaging of skyrmions (sp-STM in UHV), Theoretical Modelling, Ex-situ magnetic (MOKE) and MagnetoResistence characterization, Nanofabrication and evaluation of the spin-orbitronic device

Preparation of SOgraphene samples for spin-charge conversion systems Magnetic Characterization (AGFM, SQUID, FMR), Imaging of skyrmions (MFM), Magnetotransport, Spin pumping, Micromagnetic simulations of chiral interactions

Synchrotron experiments (Resonant X-ray Scattering, X-Ray Holography, ARPES) to determine magnetic properties with element selectivity and spatial resolution Imaging of skyrmions by X-ray ScanningTransmission Magnetic Circular Dichroism

IPM srl

Theoretical studies and simulations (Micromagnetic, modelling of skyrmions and their dynamics) Definition of the optimized design for the spin-orbitronic prototype device

FLAG-ERA

					1	
Partner	Country	Institution / Department		Name of the Principal	Nouse of the optimization	Others nextisinents
1 Coord.	Spain	IMDEA Nanociencia	IMDEA exp	Prof. Rodolfo Miranda	Dr. Julio Camarero (growth, holography) Dr. A.L. Vázquez de Parga (sp-STM)	Dr. Paolo Perna (magnetotransport) Dr. Daniel Granados (nanofabrication) Dr. Ruben Guerrero (nanofabrication)
			IMDEA Theory	Prof. Francisco Guinea (Modelling)		
2	France	CNRS UMPhy UMPHY		Dr. Vincent Cros (magneto-transport)	Prof. Pierre Seneor (spintronics with gr)	Dr. Nicolas Reyen (magnetotransport) Dr. Bruno Dlubak Prof. Albert Fert
3	France	SOLEIL		Dr. Nicolas Jaouen (X- ray scattering) SEXTANTS and CASSIOPEE beamlines	Dr. Maurizio Sacchi (holography) Dr. Amina Taleb (ARPES)	Dr. Horia Popescu (holography) Dr. Roland Gaudemer (tech. SEXTANT) Dr. François Bertan (ARPES) Dr. Patrick Lefevre
4	Italy	IPM srl		Dr. Konstantin Zvezdin (theory & simulations)	Dr. Flavio Abreu Araujo (simulation) Prof. Anatoly Zvezdin, (theory)	Dr. Pietro Perlo Dr. Petr Skirdkov Mr. Stefano Deola

15/04/2016

SpinOrbitronics in graphene

WP1: MaterialsWP3: Fundamental ScienceWP6: Spintronics

• WP1: task 1.6: synthesis of graphene on metals, task 1.7: UHV growth on arbitrary substrates, and task 1.10: characterization.

• WP3: task 3.1: STM spectroscopic studies, task 3.3: theoretical mesoscale modeling of graphene based structures, task 3.4: nanofabrication technology for gr-based devices.

• WP6: task 6.1: Optimizing materials and devices for graphene spintronics; task 6.2: magnetism in graphene and its interaction with spin transport, task 6.5: towards practical graphene spintronic devices.

Progress so far: Growth & Surface Analysis

araphene

Growth:

 Sputtering 100nm Pt @ 500°C
CVD graphene (ethylene) @ 800°C
MBE evaporation Co, Pb @ RT
Intercalation by thermal annealing @ 100 - 400°C

Polar MOKE @ RT

 \rightarrow Successful intercalation process (Co, Pb)

ene

Flag-era

- \rightarrow Up to 20MLs of Co with Perpendicular Magnetic Anisotropy
- \rightarrow Different Magnetization Reversal Mechanisms depending on the thickness
- \rightarrow Effective graphene capping (samples inert in air)

∎institute

IMdea

nanoscience

Joint Transnational Call 2015

Tailoring Spin-Orbit effects in graphene for Spin-Orbitronic applications Rodolfo Miranda

raphene

UMPHY CNRS-THALES

