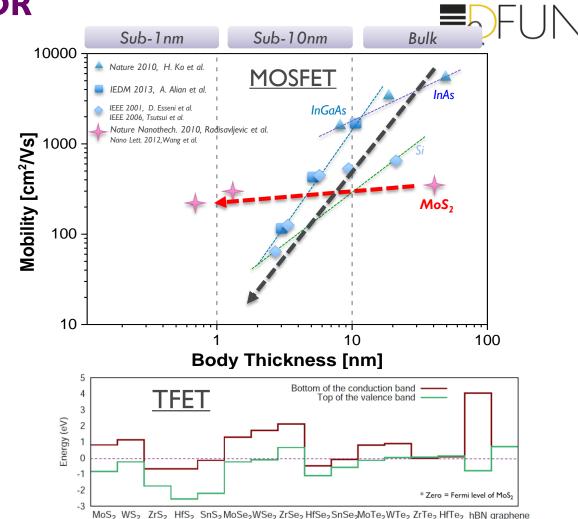

2DFUN - 2D FUNCTIONAL MX₂/GRAPHENE HETERO-STRUCTURES

FLAG-ERA JTC 2015 PROJECT KICK-OFF APRIL 13, 2016, BUDAPEST, HUNGARY MATTY CAYMAX, PROJECT COORDINATOR

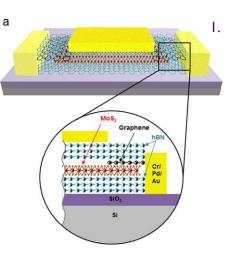
2D MATERIALS – GRAPHENE AND BEYOND VISION AND TIMELINE

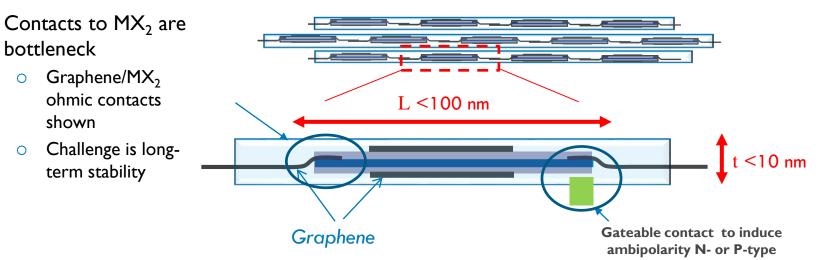


Jari Kinaret, "Graphene Flagship" presentation "Working together to combine scientific excellence and technological impacts", 2012

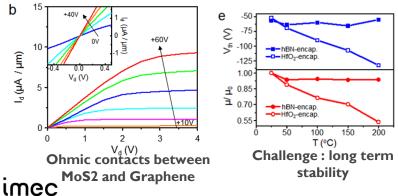
imec

WHY MX₂ FOR TRANSISTOR SCALING?


- MX₂: interesting properties for ultra-thin body devices
 - 2D crystals with VdW bonding no lattice mismatch issues
 - High DOS
 - Reasonable mobility, especially for ultra-thin channels
 - Low dielectric constant helps reducing short-channel effects (planar devices)
 - Wide band gap and wide choice of BGs allow BG engineering in TFET
 - Low density of dangling bonds on surface reduce defect density



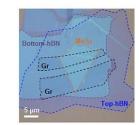
imec

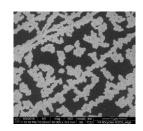

WHY GRAPHENE/MX₂ HETERO-STRUCTURES?

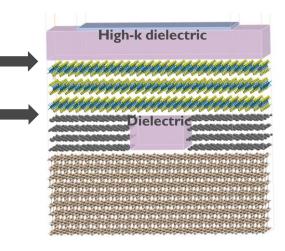
Lee et al. ACS Nano DOI: 10.1021/acsnano.5b01341

- 2. Circuit scaling approach:
 - Electrolytic gating of a MoS₂ flake shows ambipolar conduction
 - MoS₂ is normally n-type
 - Smaller XOR can be built with 2 gate transistors
 - 4 devices rather than 8 needed for same logic operation
 - Possible because of the *ability to reconfigure* the devices
 - 3D scaling through stacking of devices possible

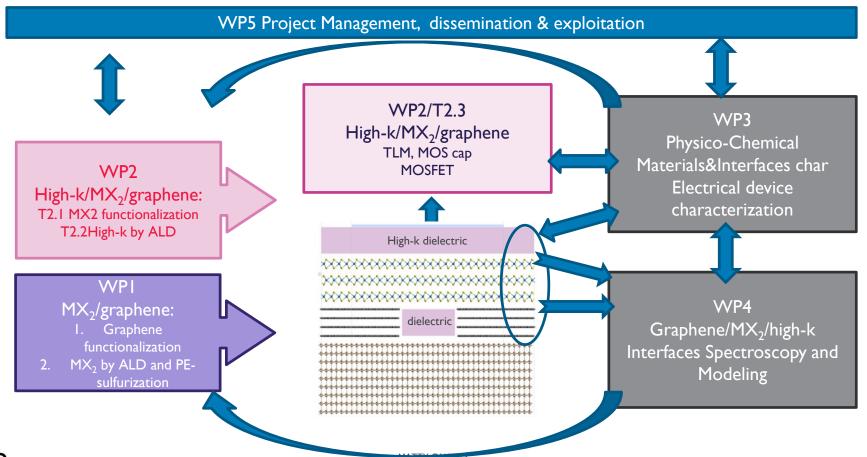
- \circ Contact between MoS₂ and graphene:
 - Ohmic? Contact resistance?
 - Coping with high current densities?
 - Scaling potential?


CHALLENGES


MX₂ MAKING AND DEVICE STRUCTURE


- Synthesis of high-quality 2D MX_2 layers with controlled thickness on large wafer size (300mm)
 - No reliable processes known/developed
 - No commercial reactors available
- Growth of layers on saturated, passive 2D surfaces $(graphene, MX_2)$
 - Requires surface functionalization
- Importance of interfaces: Ο
 - Interface between MoS₂ and Gate dielectric: Effect on mobility, hysteresis, reliability

MATTY CAYMAX


2DFUN OBJECTIVES

- Technological Objectives
 - I. Develop large-area deposition process for MX_2 on graphene
 - Low-T sulfidation (plasma enhanced) of ALD-grown metal or metal oxide layers
 - 2. Direct growth from gas phase (ALD, CVD) with M and X gas-phase precursors
 - 2. Develop high-k dielectric growth process on MX_2
 - Surface functionalization of graphene and MX₂ for these growth processes
- Scientific Objective:
 - Obtain fundamental insight in chemical structure and energy states spectrum at the highk/MX₂ and MX₂/graphene interfaces

2DFUN PROJECT AND PROJECT LAY-OUT

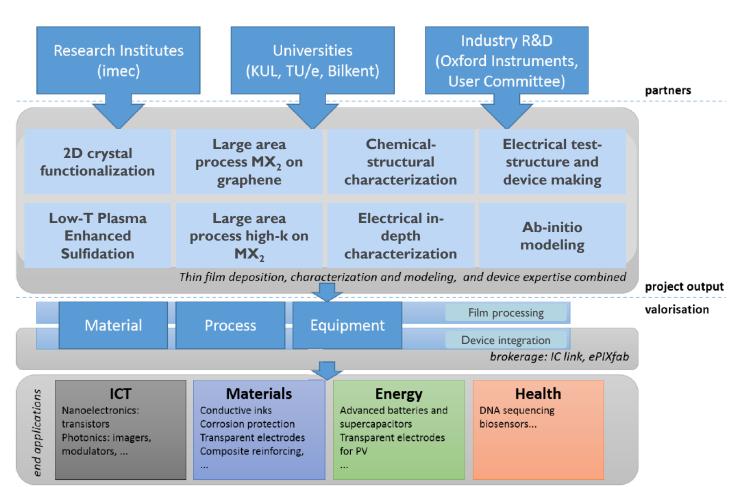
imec

HATTI CATHAA

7

2DFUN CONSORTIUM

	limec	KU LEUVEN	TU/e	Bilkent Universit	OXFORD INSTRUMENTS	
	IMEC	KULeuven	TU/e	Bilkent Univ	ΟΙ	Total
Туре	R&D institute	University	University	University	Company	
Location	Leuven, Belgium	Leuven, Belgium	Eindhoven, The Netherlands	Ankara, Turkey	Cambridge, UK	
Role	Coordinator	partner	partner	partner	partner	
Involvement	· · ·	WP2,WP3, WP4	WPI,WP3	WP4	WPI,WP5	
Budget (euro)	384909	179359	249810	129000	0	943078


PARTNERS' TASKS IN 2DFUN

	IMEC	KULeuven	TU/e	Bilkent University	OI, UK
Growth	MX ₂ on graphene High-k on MX ₂		MX ₂ on graphene		Reactor hardware for TU/e
Surface functionalization		Graphene and MX ₂ functionalization			
Electrical test structures	MOS caps,TLM, MOSFET				
Interface, film and electrical characterization	General physical, chemical and electrical	In-depth interface characterization (ESR, IPE) and electrical measurements	General physical and chemical	In-depth (e-XPS)	
Fundamental structural modeling		Atomistic interface and defect modeling			

imec

IMPACT

- NRFO in Belgium:
 VLAIO
- Strong industrial link
 via industrial partners:
 - ASM Belgium
 - AMAT Belgium
 - LAM Belgium

MX₂ LAYER SPECIFICATIONS TO BE REACHED

Requirements	Target	Measurement technique
Uniformity	100- 300mm Si wafer scale	Spectroscopic ellipsometry
Number of layers	Controlled between 1-5	Raman, RBS; For a single layer: M content= 1.2E+15 at/cm ²
Composition	VV/S = 1/2	Rutherford Backscattering Spectroscopy
Impurity content	< I at%	Elastic Recoil Detection, XPS
Crystallinity	Monocrystalline, basal plane parallel to the substrate surface Domain size > $50\mu m^2$	GI-X-Ray Diffraction, Transmission Electron Microscopy, Atomic Force Microscopy, Photoluminescence mapping
Layer continuity	Normalized substrate intensity < 1%	TOFSIMS
Contact resistance	< 400 ohm.µm	I/V measurement on TLM
Mobility	20 cm ² /Vs	Split CV in MOSFETs

imec

MATTY CAYMAX

EXPLOITABLE RESULTS

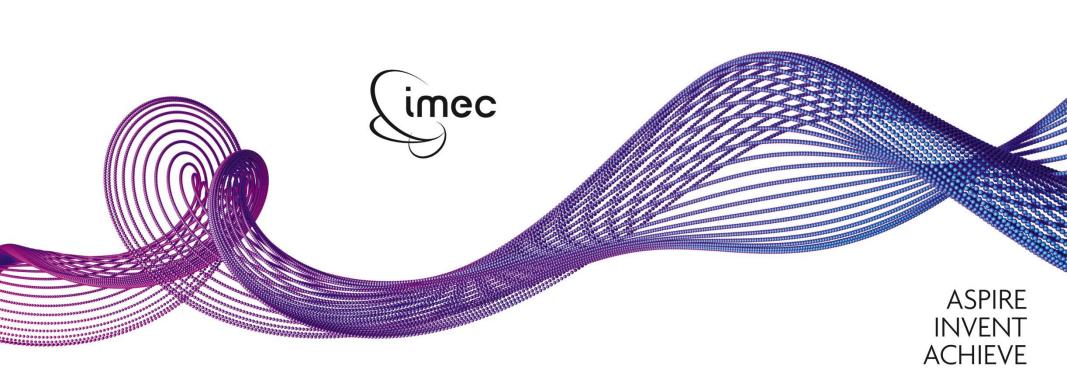
TARGETED INDUSTRIALLY VIABLE PROJECT OUTCOMES

Exploitable result	TRL at project start	TRL target	Comment
Process for manufacturable sulphurization of transition metal layer	3	5	Advancing from known post-process sulphurization of coupons to in situ (no vacuum break) sulphurization of 300mm wafers
Process for growth of MX ₂ layer on an 'inert' layer such as graphene	2	3	Advancing from no prior demonstration to success on (coupons distributed over) a 300mm wafer
Process for growth of high-k dielectric on MX ₂ layer	2	4	Advancing from no prior demonstration to results on 200 and/or 300mm wafers
Manufacturing process flow for a functional MX ₂ -based MOSFET	2	4	Advancing from results based on exfoliated layers to a lab-flow on coupons
Process tool specifications capable of delivering the project process advances	3	4	The project has only minor hardware developments, but will validate the necessary features of process tools required to exploit these methods

DISSEMINATION OF RESULTS AND TRAINING ACTIVITIES

- Website hosted by imec: <u>www.2Dfun.eu</u>
 - Public domain information only
 - Project description, consortium, members,...
 - Annual reports
 - Public deliverable reports
 - Partner publications, presentations...
 - Useful links
- Presence on other websites
 - FLAG-ERA website
 - Graphene Onboard Website of Graphene Flagship
 - Imec's internal project website = restricted area for IWT SBO participants
- Workshop(s)
 - To be organized at/by imec as satellite event of imec PTW (April or October)
- Publications & Conference presentations
 - o all partners
 - Papers & presentations posted on website

INTERACTION WITH GRAPHENE FLAGSHIP


• Complementarities

- WP3 Enabling Materials
 - growth on large area substrates
 - o in-depth fundamental understanding of the interfaces in 2D hetero-structures
- WP8 Photonics and Optoelectronics
 - \circ direct bandgap in single layer MX₂, as part of graphene/MX₂ hetero-structures
- WP9 Flexible electronics
 - o low-temperature growth techniques, without the need for transfer
- WPI0 Wafer-Scale System Integration
 - CMOS compatible graphene processing modules for integration schemes which are scalable to sub 10nm dimensions on industrial wafer scale (300mm)
- Foreseen interactions
 - \circ WP3 to provide various graphene samples to help benchmarking graphene/MX₂ and MX₂/high-k oxide stacks:
 - Graphene flakes for transfer onto Si substrate?
 - Graphene on Si substrate?
 - Natural or synthesized graphene?
 - \circ WP3 to collaborate in the characterization of 2Dfun MX₂/graphene samples
 - \circ WP9 to look into possible use of the graphene/MX₂/high k-oxide stacks for opto-electronic applications

FIRST RESULTS

- WPI&2 KULeuven chemistry dpt, TU/e and imec: functionalization of graphene, high-growth on 2D materials
 - A suitable molecule for graphene functionalization was identified, and its thermal stability studied.
 - First AI2O3 layer growth on functionalized graphene by thermal ALD shown to result in nicely closed and smooth layers
- WPI TU/e: MoS2 growth by thermal sulfidation of ALD-grown MoO3 shown, as first step towards full PE-sulfidation of same MoO3 layers
- WP4 KULeuven Physics dpt:
 - IPE study of WS2 and MoS2 on SiO2 shows that the valence band tops of both sulfides are very well aligned, hence the "Common anion" rule is valid for MX₂ compounds
 - DFT calculations on a IML MoS2 film
 - \circ show how the structures of S and Mo vacancies as well as S and Mo antisites in look like
 - Allow to calculate the g-factor of the same defects

