

Project GraNitE:

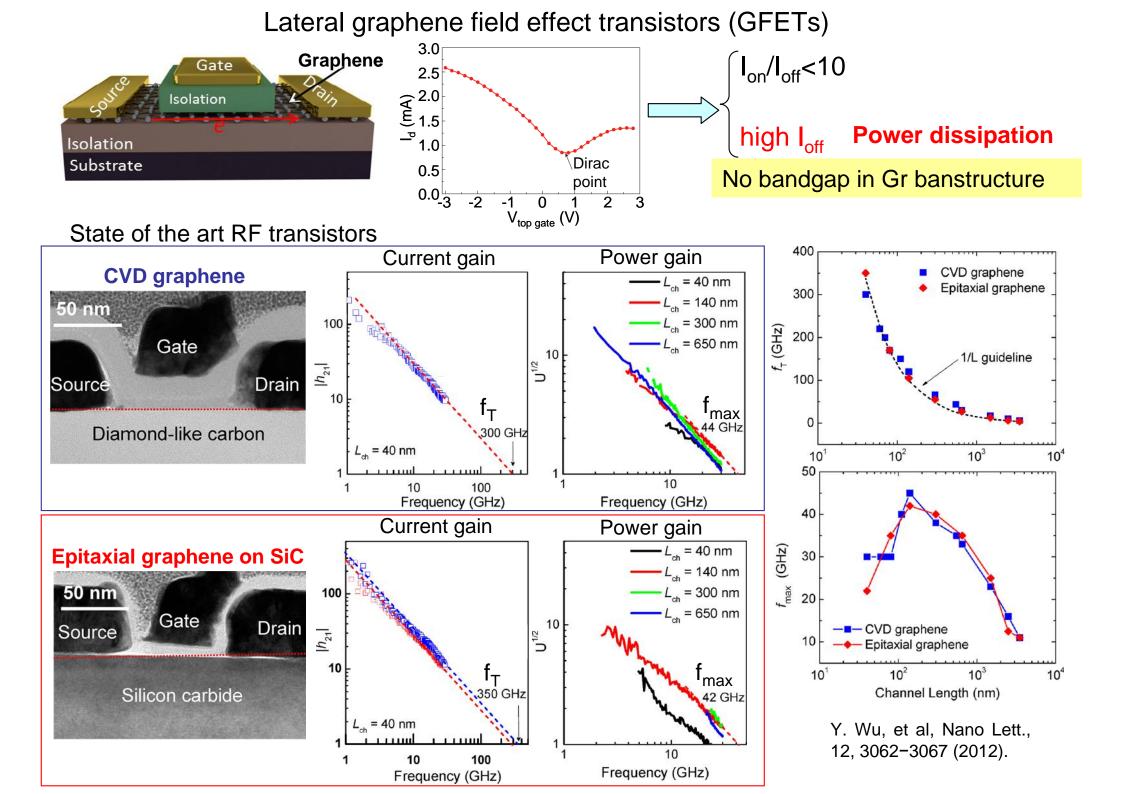
<u>Graphene heterostructures with Nitrides for</u> high frequency <u>Electronics</u>

Filippo Giannazzo

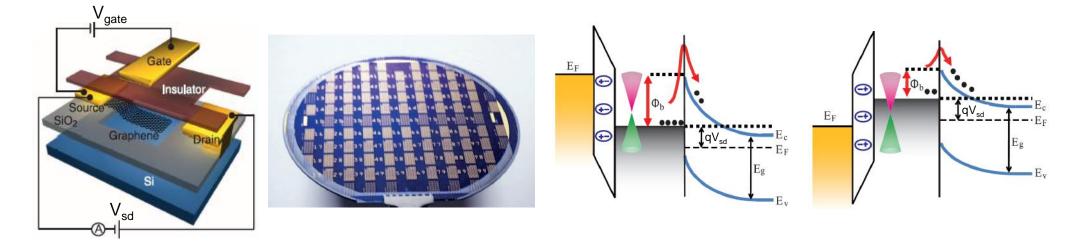
Consiglio Nazionale delle Ricerche (CNR), Institute for Microelectronics and Microsystems (IMM), Catania, Italy

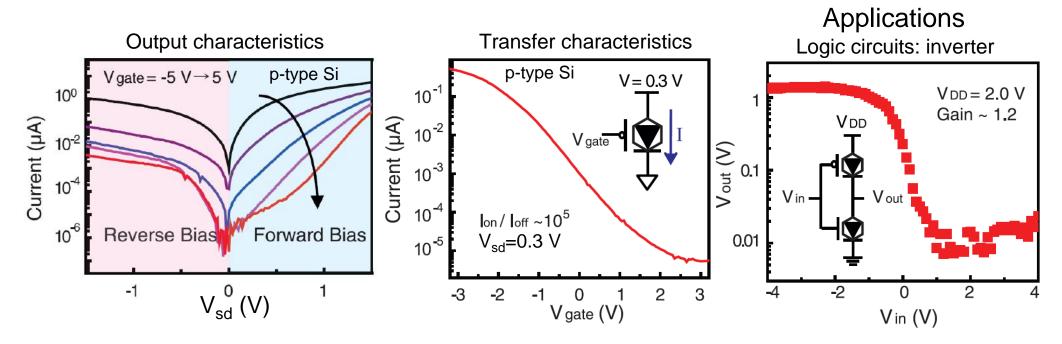
Outline

- Description of the project and research method:

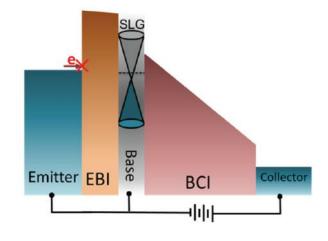

- State of the art
- Objectives
- Consortium
- Implementation, workplan

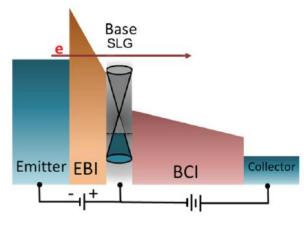
- Interaction with the Graphene Flagship Core1 project


- Expected impacts



Graphene integration with semiconductors technology Graphene/Si Schottky diode with gate modulated barrier height: Barristor

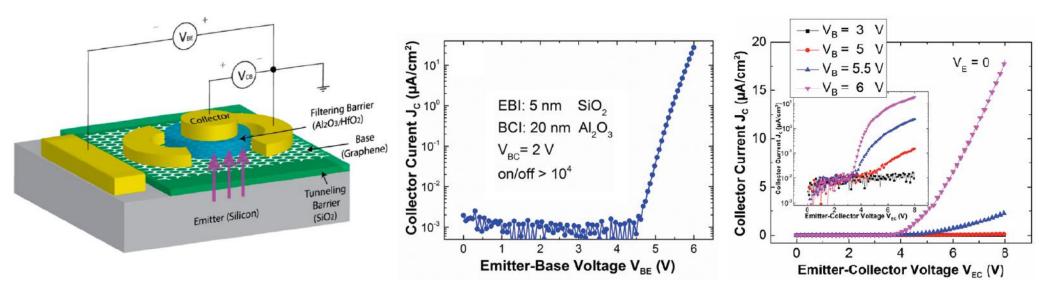




H. Yang, J. Heo, S. Park, H. Jae Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, K. Kim, Science 336, 1140-1143 (2012)

Graphene integration with semiconductor technology

Hot electron transistor (HET) with a graphene base


-Current injection of from the emitter into the Gr base by Fowler-Nordheim (FN) tunneling controlled by V_{BE} .

- Injected electrons ballistically transit in the Gr base.

- After overcoming a filtering barrier layer, hot electrons are collected at the collector terminal.

State of the art graphene HETs

C. Zeng, E. B. Song, M. Wang, S. Lee, C. M. Torres, J. Tang, B. H. Weiller, K. L. Wang, Nano Lett. 13, 2370-2375 (2013)

S. Vaziri, G. Lupina, C. Henkel, A. D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, M. C. Lemme, Nano Lett. 13, 1435 (2013)

Graphene integration with group III-Nitride (III-N) semiconductors

Motivations: GaN material of choice for optoelectronics (LED, lasers)...and energy efficient high frequency electronics

	Si	GaN]
Bandgap (eV)	1.11 (Indirect)	3.4 (Direct)	
Intrinsic carrier concentration (cm ⁻³) at 300 K	1.5×10 ¹⁰	1.9×10 ⁻¹⁰	ו
Electron mobility (cm ² V ⁻¹ s ⁻¹)	1350	1600	
Saturation electron velocity (10 ⁷ cm/s)	1.0	2.7	
Critical electric field (MV/cm)	0.3	3.3	
Thermal conductivity (W/cmK)	1.5	2.1	

for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources

Very low off-state currents

- Superior current transport
- Higher breakdown voltage
- Superior heat dissipation

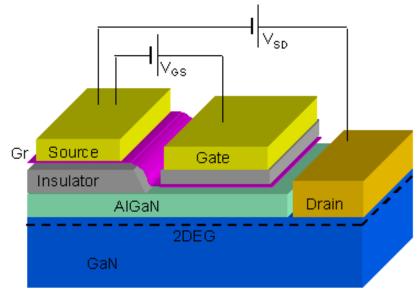
Schroedinger electrons

 $\hbar v_F \sqrt{\pi n_{gr}}$ $n_s^{\frac{2}{3}}$ Large area system of electrostatically $9\pi\hbar q$ $E_{\rm F} - E_{\rm D} = E_{\rm F} - E_{\rm cmin}$ -n. coupled Dirac and Schroedinger 2DEGs q qm " Ю Graphene 20 E_F. Al_xGa_{1-x}N E_D 2DEG GaN Έ_{cmin} GaN Ga_{1-*}N Gr Si

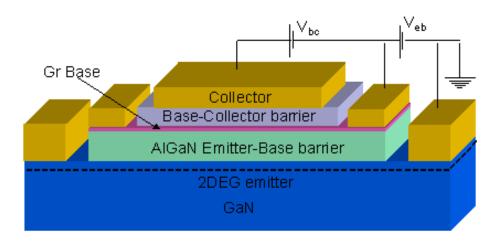
Dirac electrons

GraNitE: <u>Graphene heterostructures with Nitrides for high frequency</u> <u>Electronics</u>

Objectives:

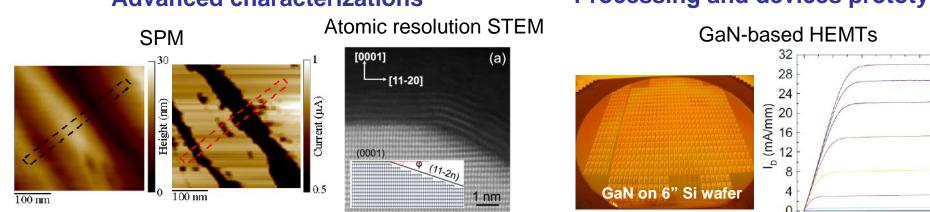

(i) Design, fabrication, structural and electrical characterization of **high quality graphene (Gr) heterostructures with thin films of Nitrides**, i.e. GaN, AIN and related alloys (Al_xGa_{1-x}N).

- III-N layers grown by MBE or MOCVD on different substrates: Al₂O₃, SiC, GaN, Si.
- Transfer of CVD grown Gr from Copper to III-N or direct growth of Gr on III-N and of III-N on Gr.


- Advanced structural and electrical characterization of the heterostructures: understanding current transport mechanisms at the interfaces.

- Multiscale simulations for the growth, processing and device design.
- (ii) Demonstration of novel device structures

Graphene/AIGaN/GaN Schottky diode with a gate modulated Schottky barrier (**Barristor**) for logic applications



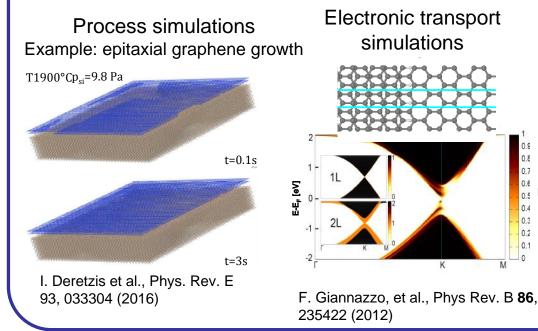
Graphene Base-Hot Electron Transistor (GB-HET) on Nitride heterostructures for ultrahigh frequency (THz) applications

Advanced characterizations

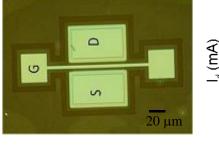
0.6 H 0.5 0.4

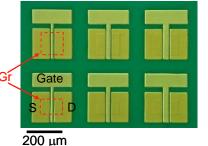
0.3

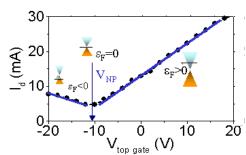
0.2


0.1

M

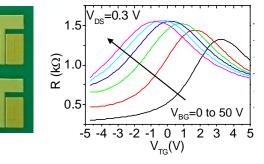

PI: F. Giannazzo, Co-PIs: F. Roccaforte, A. La Magna


G. Nicotra, Q. M. Ramasse, I. Deretzis, A. La Magna, C. Spinella, F. Giannazzo, ACS Nano 7, 3045 (2013)


Multiscale simulations

4 6 V_{DS} (V) Graphene field effect transistors

<


 ה וו N ರ

Ψ

<

10

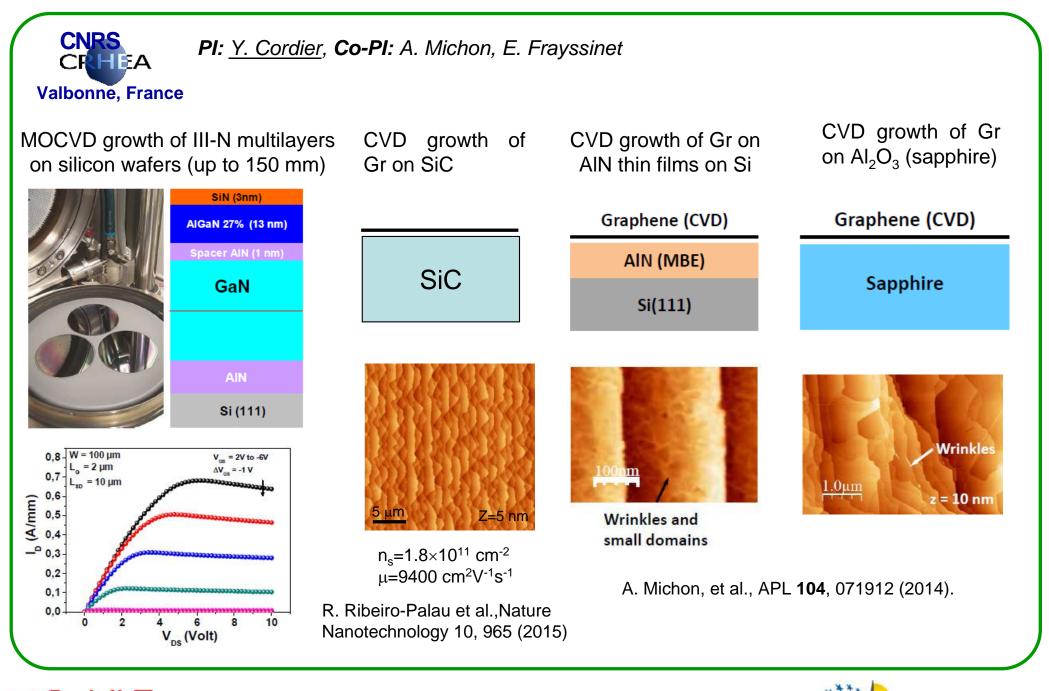
8

Processing and devices prototyping

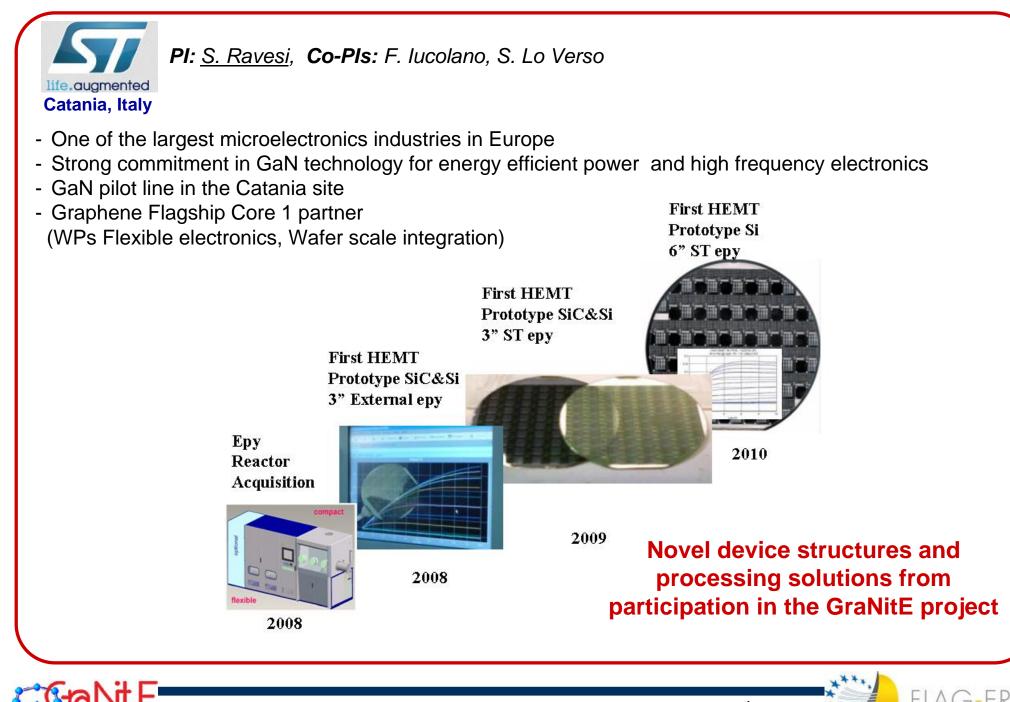
0

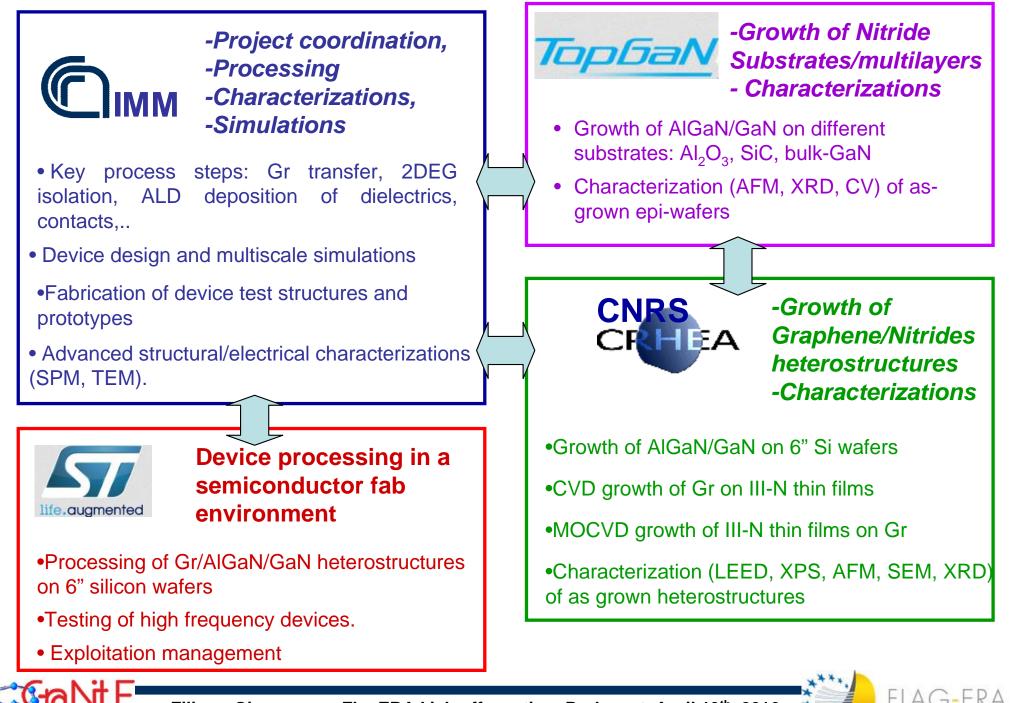
2

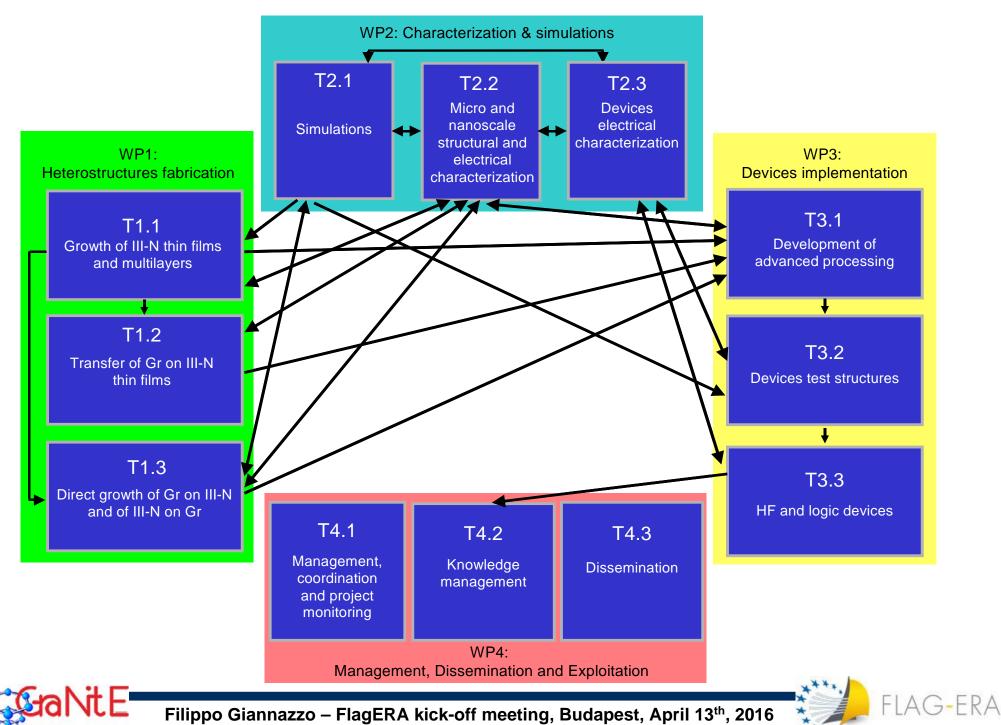
PI: <u>M. Leszczyński</u>, Co-PIs: P. Kruszewski, P. Prystawko


Growth of III-N epi structures on different substrates: AI_2O_3 , SiC, bulk-GaN

Technology for GaN-based power devices, LEDs, Lasers



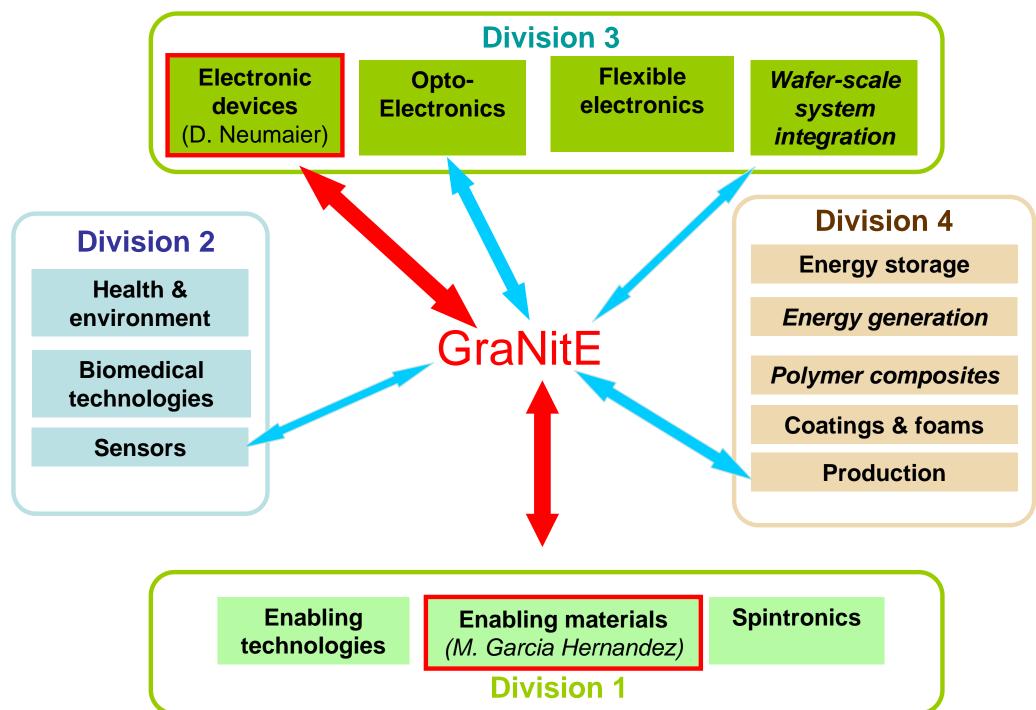




GraNitE project's consortium Roles of the partners

Project's implementation

Project's implementation


									Ga	nnt	C	nar	t																													
				1	2	3	4	5	_	_	_	8	9	10	11	12	1:	3 1	4 1	5	16					21	22	2 23	3 2	1 2	5 2	6 2	7 2	8					33	34	35	36
27	Task	-	Partners	First Year								Second Year													Third Year																	
WP 1	T1.1	Growth of III-N thin films and multilayers	TopGaN,CNRS,CNR													D1.	1																									
Heterostructures	T1.2	Transfer of Gr on III-N thin films	CNR, STM																		01.2																					
fabrication	T1.3	Direct growth of Gr on III-N and of III-N on Gr	CNRS, TopGaN, CNR																				D1.3						D1 M													
WP2	T2.1	Simulations	CNR,TopGaN,CNRS						D2.	1								D2	.3														D2	2.5			D	2.7				
Characterization	T2.2	Nanoscale structural and electrical characterization	CNR,TopGaN,CNRS					Γ										D2	.2						D2.4																	
and simulations	T2.3	Devices electrical characterization	CNR, STM																												M	3			0	2.6						D2.8
WP3	T3.1	Development of advanced processing	CNR, STM, TopGaN																										D3	3												
Devices	тз.2	Device test structures	CNR, STM												D3.1	1																	Dâ	3.4					_			
implementation	T3.3	HF and logic devices	STM, CNR																						D3.2								N	14						D3.5		
WP4	T3.1	Management, coordination and project monitoring	CNR, TopGaN, CNRS, STM													D4.	2												D4	3												D4.4
Management,	T3.2	Knowledge management	STM, CNR																N	/1																		T				
Dissem. & Expl.	T3.3	Dissemination	CNR, CNRS						D4	.1																																

- Starting date: February 1, 2016

- Kick-off meeting: Catania, February 25, 2016

Interactions with the Graphene Flagship Core 1 project

Interactions with the Graphene Flagship Core 1 project

GraNitE project's activity	Graphene Flagship Core 1 WP
Development of large area and high quality Gr heterostructures with III-N thin films: -Gr transfer from Cu to III-N layers - CVD growth of Gr on III-N and of III-N thin films on Gr.	 Enabling materials (M. Garcia Hernandez) Synergies with the groups working on the large area growth of Gr on SiC (e.g. Linkoping University) and on metals. Interactions with the characterization and modelling groups.
Novel electronic devices based on Gr heterostructures with AlGaN/GaN junctions hosting a 2DEG at the interface: - Gr/semiconductor Schottky diode with a gate modulated Schottky barrier - Gr Base Hot Electron Transistor	 Electronic devices (D. Neumaier) Comparison with other device schemes developed using different heterostructures for benchmarking. Interactions with the groups working on devices simulations and high frequency electrical characterization
GRAPHENE FLAGSHIP Memorandum of Understanding (MoU) for association of a Partnering Project to the Graphene Flagship	On behalf of the Graphene Flagship Core 1 On behalf of the Partnering Project: Project:
Following the submitted application and the approval by the Graphene Flagship Exe Board/Management Panel, the project:	Materials Leader or Deputy Name and signature:
GRAPHENE HETEROSTRUCTURES WITH NITRIDES FOR HIGH FREQUENCY ELECTROM (GRANITE) becomes associated to the Graphene Flagship initiative as a Partnering Project (PP).	NICS Name and signature: Filippo Giannazzo Daniel Neumaier Daliyos francesco Munumit

Interactions with other FlagERA JTC2015 projects

<u>A. Kakanakova</u>, R. Yakimova, G. K. Gueorguiev, V. Khranovsky

GRIFONE:

Graphitic films of group III nitrides and group II oxides: platform for fundamental studies and applications

B. Pécz, J. Lábár, L. Tóth

Expected impacts

Development of hybrid Graphene/III-N technology : know-how on materials, processing, devices

Significant scientific and technological impacts in important areas of ICT and beyond

High-frequency electronics:

Vertical hot electron transistors based on graphene/AlGaN/GaN heterostructures with cut-off frequency f_t >1THz, common base current gain α >1, collector current density up to J_c >1A/cm².

New logic devices.

Gate modulated Gr/AlGaN/GaN Schottky diodes (Barristors) with I_{on}/I_{off} >10⁸, very low I_{off} <10₋₁₂ A (i.e. very low power dissipation) and the possibility to operate at temperatures >200 °C (applications in special environment).

Production of Gr/III-N heterostructures on large area.

High quality heterostructures of Gr with III-N thin films/multilayers grown on different substrates including Si (6 inches wafers), SiC, Sapphire, GaN (from 1 to 3 inches wafers).

Potential applications in several fields: optoelectronics (LEDs, lasers), sensing,...

In line with the objectives of Graphene Flagship:

Transformational impact on science and technology and substantial benefits for the European economy and society.

FLAG-ERA

