

Jari Kinaret Chalmers University of Technology

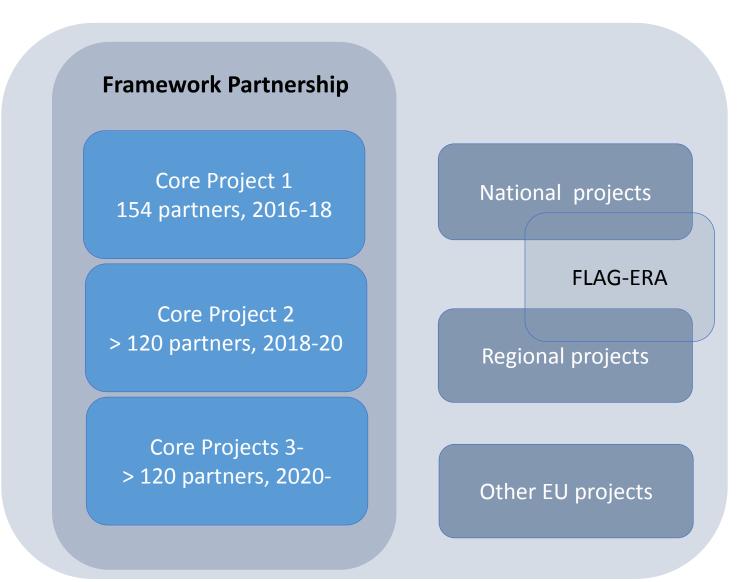
Sweden

FET flagships:

"FET Flagships are ambitious large-scale, science-driven, research initiatives that aim to achieve a visionary goal.

The scientific advance should provide a strong and broad basis for future **technological innovation** and economic exploitation in a variety of areas, as well as novel benefits for society."

Graphene Flagship mission:


"To take **graphene and related layered materials** from a state of raw potential to a point where they can revolutionize multiple industries. This will bring a new dimension to future technology – a faster, thinner, stronger, flexible, and broadband revolution. Our program will put **Europe** firmly at the heart of the process, with a manifold return on the EU investment, both in terms of **technological innovation and economic growth**."

Year	Partners	Academic	Industrial	Other	Budget/yr
2013	75	48	16	8	18 M€
2014	142	76	41	25	24 M€
2016	154	75	54	25	45 M€

 \rightarrow Graphene Flagship has a growing industrial component with focus on utilization

Flagship in H2020

EC-funded part

- H2020: Core 1 contract signed on March 3, 2016
 - 154 partners in 23 countries; about 1/3 industry, 1/2 academia and 1/6 other
 - 15 S&T work packages, 5 supporting work packages
 - 450 full-time equivalent persons, 1,000 individuals

 Progress along the value chain materialscomponents-systems towards higher technology readiness levels

Core 1 work packages

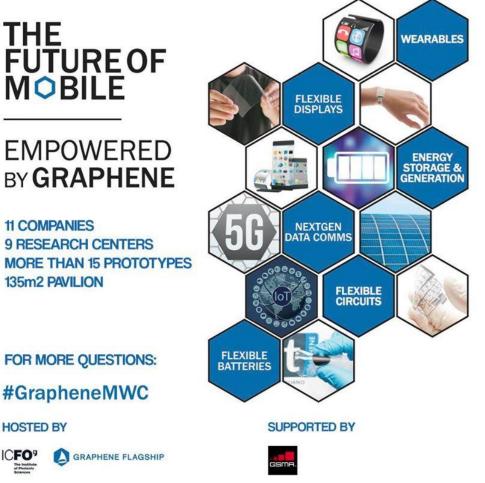
- Administrative
 - Management (J.Kinaret)
 - Research management (K. Boustedt)
 - Innovation (K. Hjelt)
 - Dissemination (M. Fogelström)
 - Alignment (A. Helman)
- Division 1 (V. Fal'ko)
 - Enabling technologies (V. Fal'ko)
 - Enabling materials (M. Garcia Hernandez)
 - Spintronics (B. van Wees)
- Division 2 (M. Prato)
 - Health & environment (M. Prato)
 - Biomedical technologies (K. Kostarelos)
 - Sensors (H. van der Zant)

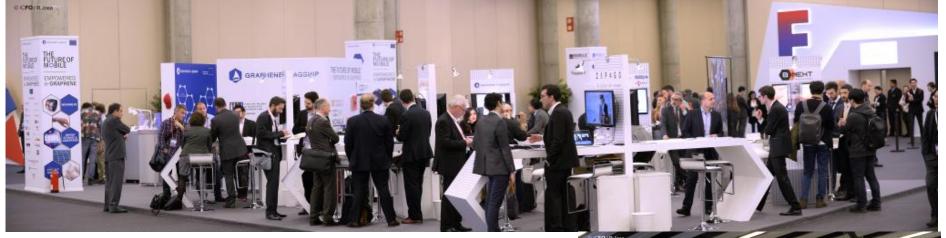
- Division 3 (D. Neumaier)
 - Electric devices (D. Neumaier)
 - Optoelectronics (F. Koppens)
 - Flexible electronics (H. Sandberg)
 - Wafer-scale system integration (M. Romagnoli)
- Division 4 (G. Gebel)
 - Energy storage (V. Pellegrini)
 - Energy generation (G. Gebel)
 - Polymer composites (V. Palermo)
 - Coatings & foams (X.-L. Feng)
 - Production (K. Teo)
- Division 5
 - External (N.N.)

Estimated technology readiness levels

	Materials	Electronics	Optoel. & photonics	Sensors	Flexible	Energy	Composites & Membranes	Production
TRL 9							Sports equipment	Chemical exfoliation CVD
TRL 8								R2R CVD
TRL 7			Touch screen	Magnetic field	Packaging?			
TRL 6				Humidity, pressure		Supercaps, batteries		
TRL 5								
TRL 4		Freq. multiplier, amplifier			Flexible screen		Anti-corrosive coatings	Other LMs
TRL 3	Other LMs		Data transmission					
TRL 2								
TRL 1								

Emerging areas: nanofluidics, medical technologies




Highlights: Mobile World Congress

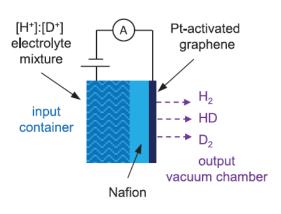
- A very large congress in Barcelona on Feb 27 – March 2. About 100,000 physical visitors, all major players (except Apple) were present
- Conference organizer GSMA invited us to showcase graphene, and sponsored us with about 290,000 € as 135 m² free exhibition space and a number of tickets
- Huge media attention! Visitors included EU commissioners, ministers, business leaders, celebrities,... - everyone

WELCOME TO THE GRAPHENE PAVILION

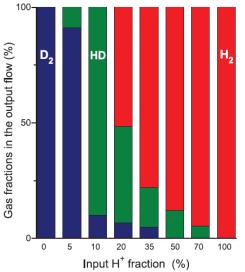
HALL 8.0 L30

FO/RJC

A few highlights: electronics, flexible demonstrators, biomedicine, coatings,...



Other examples


- Graphene Study school on sensors, biomedicine and membranes in Les Houches in January (59 participants)
- Graphene Connect industrial workshop on biomedical technologies in Grenoble, February (40 participants)
- High-profile articles, *e.g.* A.K. Geim *et al*, Science on Jan 1, 2016 : isotope sieve

Ordinary hydrogen (H) and its heavier isotope, deuterium (D), can be separated by a graphene membrane.

Larger gas molecules can be separated by structured membranes: examples of nanofluidics.

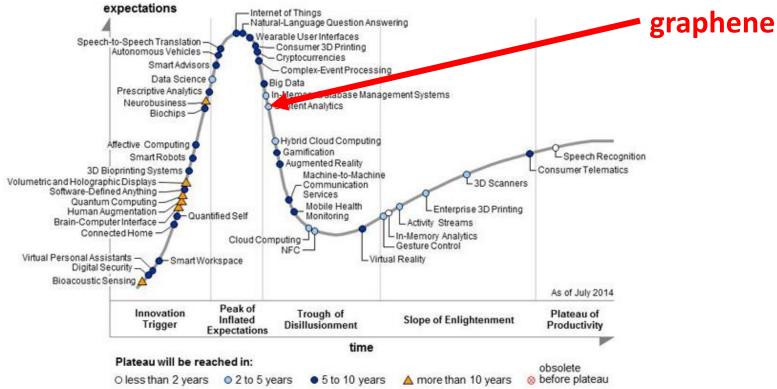
Applications in, *e.g.*, energy production, climate control and biotechnology.

Some key performance indicators

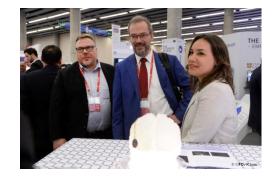
Indicator	Target (M30)	Actual (M24)
Publications	329	606
Invited talks	149	608
Patent applications	38	22
PhD students and postdocs recruited	164	275
Enterprises using university facilities	29	77
Prototypes	7	17
Products on the market	8	16

International collaboration

- International workshops in USA, Korea and Japan in 2015, to be followed by similar workshops in Copenhagen, Manchester and Barcelona in 2016.
- Mobility grant scheme with 5000 € support for young researchers' international visits, to be launched in April. A reciprocal scheme by the NSF (US) will be announced soon.


GRAPHENE FLAGSHIP

Associated members


- Currently 44 AMs, one of which (ABB) becomes a partner in Core 1
- The AMs come from 17 countries. Largest number come from Germany (14)
- 6 AMs have joined as individual organizations, not through a larger project
- Of the 13 AMs that joined before the JTC1, 11 are companies
- Of the 30 AMs from the 13 PPs coming from the JTC1, 5 are companies
- We expect that a few more AMs will be approved in early April (mostly/only companies)
- List on the next page: **boldface** = company

AM	Country	Project	TopGaN	Poland	GraNitE
Netzsch Feinmahltechnik	Germany	Polygraph NMP	Catholic University of Leuven	Belgium	2Dfun
NetComposites	UK	Polygraph NMP	Bilkent University	Turkey	2Dfun
Imerys	Switzerland	Polygraph NMP	University of Sassari	Italy	G-Immunom
Leibniz Institute of Surface Modification	Germany	Gladiator NMP	Ankara University	Turkey	G-Immunor
SURAGUS GmbH	Germany	Gladiator NMP	University Hospital Cologne	Germany	G-Immunom
Aristotle University of Thessaloniki	Greece	Gladiator NMP	International Center of Biodynamics	Romania	Graphtivity
Organic Electronic Technologies	Greece	Gladiator NMP	University of Ruhr Bochum Brains On-line	Germany	Graphtivity
Nano-Carbon	Poland	-		Netherlands	Graphtivity
Graphensic	Sweden	-	Leibniz Institute for Polymer Research	Germany	GRMH2TANI
LEGO	Denmark	-	ONERA	France	GRMH2TAN
Bosch	Germany	-	Brandenburg Technical University	Germany	GRMH2TAN
TALGA Advanced Materials GmbH	Germany	-	GLEXYZ	Portugal	GRMH2TANI
NAWA Technologies	France	-	University of Konstanz	Germany	iSpinText
Autonomous University of Madrid	Spain	HiMagGraphene	Budapest University of Technology	Hungary	iSpinText
Center for Energy Science (MTA EK	Hungary	GRIFONE	and Economics		
MFA)			Lund University	Sweden	TAILSPIN
University of Duisburg-Essen	Germany	NU-TEGRAM	Leibniz University of Hanover	Germany	TAILSPIN
National Graduate School of	France	NU-TEGRAM	University of the Basque Country	Spain	TRANS2DTM
Engineering & Research Center in Caen			University of Antwerp	Belgium	TRANS2DTM
University of Twente	Netherlands	NU-TEGRAM	Jacobs University of Bremen	Germany	TRANS2DTM
Institute Ruđer Bošković	Croatia	NU-TEGRAM	Polytechnic University of Catalonia	Spain	TUGRACO
Soleil Synchrotron	France	Sograph	University of Siegen	Germany	TUGRACO

Future considerations: Subscription Flagship disruptive technologies evolution

Technology is slowly maturing, and a shift towards higher TRL is evident in the composition and focus of the Graphene Flagship: more industrial partners, new WPs on biomedical technologies and system level integration, new Head of Innovation with industrial and entrepreneurial background (Dr Kari Hjelt).

Considerations for Core Project vs. PPs

- Advantage/Need of a large, comprehensive project is unclear for projects that are on a very low technology readiness level (fundamental research): Very low TRLs are suitable for PPs
- Mutual competition may become problem in a large consortium for projects that are very close to market *High TRLs are suitable for PPs*
- Member state funding systems may be able to react faster than the core project (at least 18 month planning cycle, e.g. Nov. 2014 – April 2016): Emerging hot topics may be suitable for PPs
- Core projects are not exhaustive even in the topics they cover (e.g. sensors): Need collaboration with MS's and Core projects
- A comprehensive list of suggestions was produced at our Science and Technology Forum in November in Paris and communicated to FLAG-ERA

Graphene disruptive technologies - from academic laboratories to society